
Compiling Fortran 90D/HPF for Distributed Memory MIMD Computers�

Zeki Bozkus, Alok Choudharyy, Geo�rey Fox, Tomasz Haupt, Sanjay Rankaz, and Min-You Wux

Syracuse University

Northeast Parallel Architectures Center

3-201, Center for Science and Technology

Syracuse University

Syracuse, NY, 13244-4100

fzbozkus, choudhar, gcf, haupt, ranka, wug@npac.syr.edu

Abstract

This paper describes the design of the Fortran90D/HPF compiler, a source-to-source paral-

lel compiler for distributed memory systems being developed at Syracuse University. Fortran

90D/HPF is a data parallel language with special directives to specify data alignment and dis-

tributions. A systematic methodology to process distribution directives of Fortran 90D/HPF

is presented. Furthermore, techniques for data and computation partitioning, communication

detection and generation, and the run-time support for the compiler are discussed. Finally,

initial performance results for the compiler are presented. We believe that the methodology

to process data distribution, computation partitioning, communication system design and the

overall compiler design can be used by the implementors of compilers for HPF.
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1 Introduction

Distributed memory multiprocessors are increasingly being used for providing high performance for

scienti�c applications. Distributed memory machines o�er signi�cant advantages over their shared

memory counterparts in terms of cost and scalability, though it is widely accepted that they are

di�cult to program, given the current state of the software technology. Currently, distributed

memory machines are programmed using a node language and a message-passing library. This

process is tedious and error prone because the user must perform the task of data distribution and

communication for non-local data accesses.

There has been signi�cant research in developing parallelizing compilers. In this approach, the

compiler takes a sequential program as input, applies a set of transformation rules, and produces

a parallelized code for the target machine. However, a sequential language, such as Fortran 77,

obscures the parallelism of a problem in sequential loops and other sequential constructs. This

makes the potential parallelism of a program di�cult to detect by a parallelizing compiler. Thus,

in our opinion, compiling a sequential program into a parallel program is not a natural approach. An

alternative approach is to use a programming language that can naturally represent an application

without losing the application's original parallelism. Fortran 90 [1] (with some extensions) is such

a language. The extensions include parallel loop, such as a forall statement and compiler directives

for data partitioning, such as decomposition, alignment, and distribution. Fortran 90 with these

extensions is what we call \Fortran 90D", a Fortran 90 version of the Fortran D language [2]. We

developed the Fortran D language with our colleagues at Rice University. There is an analogous

version of Fortran 77, with compiler directives and other constructs, called Fortran 77D. Fortran

D allows a user to advise the compiler on the allocation of data to processor memories. Recently,

the High Performance Fortran Forum, an informal group of people from academia, industry and

national labs, led by Ken Kennedy, developed a language called HPF (High Performance Fortran)

[3] based on a number of languages such as Fortran D, CM Fortran [4] and Vienna Fortran [5].

HPF essentially adds extensions to Fortran 90 similar to the Fortran D directives. Hence, Fortran

90D and HPF are very similar except for a few syntactic di�erences. For this reason, we call our

compiler the Fortran 90D/HPF compiler.

From our point of view, Fortran90 is not only a language for SIMD computers [4, 6], but it is

also a natural language for specifying parallelism in a class of problems called loosely synchronous
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problems. In Fortran 90D/HPF, parallelism is represented with parallel constructs such as array

operations, where statements, forall statements, and intrinsic functions. This gives the programmer

a powerful tool to express the data parallelism natural to a problem.

This paper presents the design of a prototype compiler for Fortran 90D/HPF. The compiler

takes as input a program written in Fortran 90D/HPF. Output is a SPMD (Single ProgramMultiple

Data) program with appropriate data and computation partitioning and communication calls for

distributed memory MIMD machines. Therefore, the user can still program using a data parallel

language but is relieved of the responsibility to perform data distribution and communication.

The rest of this paper is organized as follows. The compiler system overview is described

in Section 2. Data partitioning, and computation partitioning are discussed in Sections 3, and

4. Section 5 presents the communication primitives and communication generation for Fortran

90D/HPF programs. In Section 6, we present the runtime support system including the intrinsic

functions. Section 7 summarizes our initial experience using the current version of the compiler. It

also presents a comparison of the performance with hand-written parallel code. Section 8 presents

a summary of related work. Finally, a summary and conclusions are presented in Section 9.

2 Compiler System Overview

Our Fortran 90D/HPF compiler exploits only the parallelism expressed in the data parallel con-

structs. We do not attempt to parallelize other constructs such as do loops and while loops, since

they are used only as naturally sequential control constructs in this language. The foundation of our

design lies in recognizing commonly occurring computation and communication patterns. These

patterns are then replaced by calls to optimized run-time support system routines. The run-time

support system includes parallel intrinsic functions, data distribution functions, communication

primitives and several other miscellaneous routines.

The basic structure of our Fortran 90D/HPF compiler is organized around four major modules:

parsing, partitioning, communication detection and insertion, and code generation. Given a syn-

tactically correct Fortran90D/HPF program, the �rst step of the compilation is to generate a parse

tree. The front-end to parse Fortran 90 for the compiler was obtained from ParaSoft Corp. This

module parses the input program into an abstract syntax tree, performs semantic analysis to anno-

tate the tree with type information, and builds up a symbol table; it also performs error checking.
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Our compiler transforms each array assignment statement and where statement into an equivalent

forall statement with no loss of information [7]. In this way, subsequent steps need only deal with

forall statements. Currently, our compiler does not handle module, pointer, and allocatable array

statements of Fortran 90.

The partitioning module processes data distribution directives, namely, decomposition, dis-

tribute and align. Using these directives, it partitions data and computation among processors.

Dependence analysis is carried out to obtain dependence information for use in sequentialization

of the data parallel constructs and insertion of communication primitives. Standard techniques of

data dependence analysis for Fortran programs can be applied here [8].

After partitioning, the parallel constructs in the node program are sequentialized, since they

will be executed on a single processor. This is performed by the sequentialization module. Ar-

ray operations and forall statements in the original program are transferred into loops or nested

loops. The communication module detects communication requirements and inserts appropriate

communication primitives.

Finally, the code generator produces a loosely synchronous SPMD code. The generated code

is structured as alternating phases of local computation and global communication. Local com-

putations consist of operations by each processor on the data in its own memory. Collective

communication includes any transfer of data among processors, possibly with arithmetic or logical

computation on the data as it is transferred (e.g., reduction functions). In such a model, processes

do not need to synchronize during local computation. But, if two or more nodes interact, they are

implicitly synchronized by global communication.

3 Data Partitioning

Distributed memory systems solve the memory bottleneck of vector supercomputers by having

separate memory for each processor. However, distributed memory systems requirehigh locality for

good performance. Therefore, the distribution of data across processors is of critical importance to

the e�ciency of a parallel program in a distributed memory system.

Fortran D provides users with explicit control over data partitioning with data alignment and

distribution speci�cations. It has three main compiler directives.

� DECOMPOSITION
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Figure 1: Three stage array mapping

� ALIGN

� DISTRIBUTE

The DECOMPOSITION directive is used to declare the name, dimensionality, and the size of

each problem domain. A decomposition is simply an abstract representation of a problem or index

domain. We call it \template" (a name chosen to describe DECOMPOSITION in HPF [3]).

The ALIGN directive speci�es �ne-grain parallelism, mapping each array element onto one or

more elements of the template. There may be multiple templates representing di�erent problem

mappings, but an array may be aligned to only one template at any time. All scalars are replicated.

An array not explicitly aligned to any template serves as its own template.

The DISTRIBUTE directive speci�es coarse-grain parallelism, grouping template elements and

mapping them (and aligned array elements) to the �nite resources of the machine. Each dimension

of the template is distributed in either block or cyclic fashion. The selected distribution can a�ect

the ability of the compiler to minimize communication and load imbalance in the resulting program.

The Fortran 90D/HPF compiler maps arrays to the physical processors using a three stage

mapping as shown in Figure 1. This three stage mapping has also been proposed in HPF [3].

Stage 1: ALIGN directives are processed to compute functions that map the array index

domain to the template index domain and vice versa.

Stage 2: Each dimension of a template is mapped onto the logical processor grid based on the

DISTRIBUTE directives. Block divides the template into contiguous chunks. Cyclic speci�es a

round-robin division of the template. The mapping functions � and �
�1 to generate relationship

between global and local indices are computed. These function have been studied extensively by
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Koelbel[9].

Stage 3: The logical processor grid is mapped onto the physical system. This mapping can

change from one system to another, but the data mapping onto the logical processor grid does not

need to change. This enhances portability across a large number of architectures.

By performing the above three stage mapping, the compiler is decoupled from the speci�cs

of a given machine or con�guration. We now give the compilation techniques of Stage 1. The

compilation of distribution directives and Stages 2 and 3 are described in more detail [10].

Compiling the ALIGN Directive (Stage 1)

Alignment determines which portions of two or more arrays will be mapped to the same processor.

Clearly, if arrays involved in the same computation are aligned in such a manner that after dis-

tribution their respective sections lie on the same processor then the number of non-local accesses

will be reduced. The DECOMPOSITION directive de�nes the shape and rank of a given template.

Let A be an m-dimensional array and TEMPL be an n-dimensional template. The general form

of the alignment directive is

C$ ALIGN A(i1[*], ... ,im[*]) WITH TEMPL(f1(ia1)[*], ... ,fn(iam)[*]).

The speci�ed elements of A are aligned to those of TEMPL. The template is eventually

distributed on a set of processors and the compiler guarantees that the array elements aligned to

the same element of the template will be mapped to the same processor.

An alignment function, fk , is required to be an a�ne function. That is, fk = sk � ia
k
+ ok or

fk = ok. The parameters ia
k
, sk , and ok correspond to the three components of the alignment:

axis, stride, and o�set. Misalignment in the stride components causes unstructured communication,

and misalignment in the o�set component causes nearest-neighbor communication [11].

The Fortran 90D/HPF compiler requires that each of A's subscripts i1, ... ,im appear ex-

actly once on the TEMPL's subscripts, so that a one-to-one correspondence with a section of

TEMPL is established. This restriction does not permit skew alignments such as aligning A(I)

with TEMPL(I; I) or A(I; J) with TEMPL(I + J). The order of axes in the array may be dif-

ferent from the order of axes in the template. This permits transpose style alignments such as

aligning A(I; J) with TEMPL(J; I).

The symbol \*" indicates that the corresponding dimension is replicated or collapsed. It may
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Algorithm 1 (Compiling Align directives)

Input: Fortran 90D/HPF syntax tree with some alignment functions to template

Output: Fortran 90D/HPF syntax tree with identical alignment functions to template

Method: For each aligned array, and for each dimension of that array,

carry out the following steps:

Step 1. Extend aligned arrays to match template size.

Step 2. Determine local shape of arrays.

Step 3. Apply alignment functions to the aligned arrays.

Step 4. Transform into canonical form.

Step 5. Compute f�1(i).

appear in both the array and the template subscripts. The array rank (number of dimensions) m

may be di�erent from the rank of the template, n. For example, the directive

C$ ALIGN A(i,*) WITH TEMPL(i+ 1)

requires the second dimension of the array A be collapsed (not distributed), while the directive

C$ ALIGN A(i) WITH TEMPL(*,i+ 1)

forces replication of array A along the �rst dimension of the template TEMPL.

Algorithm 1 gives the steps in the algorithm used by our Fortran 90D/HPF compiler to process

the align directives. The following example illustrates the steps and all the transformations

performed to transform array indices from the array index domain to template index domain and

vice versa.

Consider the Fortran 90D/HPF code fragment shown in Figure 2. There are three arrays

ODD(N/2), EVEN(N/2) and NUM(N). Elements of the array ODD are aligned with odd elements

of TEMPL. Similarly, elements of the array EVEN are aligned with the even elements of TEMPL.

NUM is aligned identically with TEMPL. Hence, ODD and EVEN are aligned with odd and even

indices of NUM respectively, because they are aligned to the same template.

Step 1. Extend aligned arrays to match template size. Note that we assume that the array

size is equal to or smaller than the template size in the distributed dimension(s). If an array size

is smaller than the template size in the distributed dimension, the compiler extends the array size

to match the template size. For example, ODD and EVEN arrays are extended to size N to match

the template TEMPL's size, which is N . Note that an array is only extended in the distributed

dimension of the array. An alternative approach such as proposed by Chatterjee et al. [12] is to
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1. PARAMETER(NPROC1=10, N=100)

2. REAL NUM(N), ODD(N/2), EVEN(N/2)

3. C$ DECOMPOSITION TEMPL(N)

4. C$ DISTRIBUTE TEMPL(BLOCK)

5. C$ ALIGN NUM(I) WITH TEMPL(I)

6. C$ ALIGN ODD(I) WITH TEMPL(2*I-1)

7. C$ ALIGN EVEN(I) WITH TEMPL(2*I)

8. FORALL(I=1:N:2) NUM(I) = ODD((I+1)/2)

9. FORALL(I=2:N:2) NUM(I) = EVEN(I/2)

10. LOC=MAXLOC(ODD)

Figure 2: Example 1: A Fortran 90D/HPF program fragment involving directives, forall's and an

intrinsic function.

compute and store the local index in a table. However, this introduces a level of indirection for each

access. Furthermore, storing an index table also requires memory space that can be potentially as

large as the distributed array itself. Many of the commercial compilers (e.g., Dec MPP Fortran [6],

CM-Fortran [4], and Cray MPP Fortran [13]) extend arrays to the nearest power of two, whereas

we extend in the distributed dimension to match the template size.

Step 2. Determine local shape of arrays. In this step, the compiler determines the local shape

and size of the distributed arrays based on the processor grid information associated with the corre-

sponding template. In the above example, the template TEMPL is distributed on P processors. P

is a compile-time parameter for each dimension of DISTRIBUTION directive. Hence, the compiler

determines the size of the distributed dimension of arrays as ODD(dN=P e), EVEN(dN=Pe) and

NUM(dN=Pe). Since our compiler produces SPMD code, array declarations are the same in every

processor.

Step 3. Apply alignment functions to the aligned arrays. In this step, all indices of each

occurrence of an array (all the statements) in the input program are transformed into the template

index domain using the alignment function f(I). Arrays ODD, EVEN, and NUM are associated

with fo(I) = 2 � I � 1, fe(I) = 2 � I , fn(I) = I functions, respectively. Figure 3 illustrates this

transformation on the array ODD. For example, the �rst forall assignment statement in Figure 2

NUM(I)=ODD((I+1)/2) is transformed into NUM(I)=ODD(2*((I+1)/2)-1) (1)

by applying the functions fn(I) = I (identity function) and fo(I) = 2 � I � 1 to the lhs and the
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rhs respectively.

Step 4. Transform into canonical form1. In this step, the compiler simpli�es all functions

applied in Step 3 by performing symbolic manipulation and partial evaluation of constants. For

example, statement (1) becomes NUM(I)=ODD(I).

The above simpli�cation of indices helps the compiler to choose e�cient collective communica-

tion routines. Our communication detection algorithm is based on symbolically comparing the lhs

and rhs reference patterns and determining if the pattern is associated with one of the collective

communication routines. In the above statement the compiler compares lhs and rhs indices and

determines that no communication is required, because both of the array reference patterns are

given by I and are aligned to the same template. However, if the rhs are ODD(I+2), it will be

recognized as a shift communication.

Step 5. Compute f
�1(i). For each array, we compute the inverse alignment function f

�1(i)

corresponding to each f(i); f�1(i) is stored in the Distributed Array Descriptor (DAD) [14]. In

DAD, for each alignment function (a�ne) we store constants a and b, where f(i) = ai + b. This

function is needed when any computation needs to be performed using the original index of an

array. For example, the last statement in Figure 2 calls the intrinsic function MAXLOC to �nd

the location of the maximum element in the array ODD. This function must be evaluated using

1A canonical form is a syntactic form in which variables appear in a prede�ned order and constants are partially

evaluated.
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the original array indices. The inverse function for array ODD is f�1(i) = i+1
2
. MAXLOC will

return the location of the maximum value in the original array index domain by applying the f�1

function.

4 Computation Partitioning

Once the data is distributed, there are several alternatives for assigning computations to processing

elements (PEs) for each instance of a forall statement. Note that we internally transform all

array statements into equivalent forall representations. One of the most common methods for

computation assignment is to use the owner computes rule. In the owner computes rule, the

computation is assigned to the PE owning the lhs data element. This rule is simple to implement

and performs well in many cases. Most of the current implementations of parallelizing compilers

use the owner computes rule [5, 15]. However, it may not be possible to apply the owner computes

rule for every case. The following examples describe how our compiler performs computation

partitioning.

Example 1 (canonical form) Consider the following statement, taken from the Jacobi relax-

ation program

forall (i=1:N, j=1:N)

& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

In the above example, as in a large number of scienti�c computations, the forall statement can

be written in the canonical form. In this form, the subscript value in the lhs is identical to the forall

iteration variable. In such cases, the iterations can be easily distributed using the owner computes

rule.

Figure 4 shows the possible data and iteration distributions for the lhsI = rhsI assignment

caused by iteration instance I . Cases 1 and 2 illustrate the order of communication and computation

arising from the owner computes rule. Essentially, all the communications to fetch o�-processor

data required to execute an iteration instance are performed before the computation is performed.

Example 2 (non-canonical form) Consider the following statement, taken from an FFT

program

forall (i=1:incrm, j=1:nx/2)

& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)
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CASE 1: No communications

Figure 4: I shows the processor on which the computation is performed; lhsI and rhsI show the

processors on which the lhs and rhs of instance I reside.

The lhs array index is not in the canonical form. In this case, the compiler equally distributes

the iteration space on the number of processors on which the lhs array is distributed. Hence, the

total number of iterations will still be the same as the number of lhs array elements being assigned.

However, this type of forall statement will result in either Case 3 or Case 4 in Figure 2. The

generated code will be in the following order.

Communications ! some global communication primitives to read off-processor values

Computation ! local computation

Communication ! a communication primitive to write the calculated values to off-processors

5 Communication

Our Fortran 90D/HPF compiler produces calls to collective communication routines instead of

generating individual processor send and receive calls inside the compiled code. The idea of using

collective communication routines came from researchers involved in developing scienti�c applica-

tion programs [16]. There are three main reasons for using collective communication to support

interprocessor communication in the Fortran 90D/HPF compiler.
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1. Improved performance of Fortran 90D/HPF programs. To achieve good performance, inter-

processor communication must be minimized. By developing a separate library of interpro-

cessor communication routines, each routine can be optimized. This is particularly important

given that the routines will be used by many programs compiled through the compiler.

2. Increased portability of the Fortran 90D/HPF compiler. Separating the communication library

from the basic compiler design enhances portability because only the machine speci�c low-level

communication calls in the library need to be changed. Note that the compiler communication

library can be optimized for each machine and portability is derived from a common interface

so that the code generation by the compiler does not have to change.

3. Improved performance estimation of communication costs. Our compiler takes the data distri-

bution for the source arrays from the user as compiler directives. However, any future compiler

will require a capability to perform automatic data distribution and alignments [17, 18, 11].

In any case, distributions of temporary arrays must be determined by the compiler. Such

techniques usually require computing trade-o�s between exploitable parallelism and the com-

munication costs. The costs of collective communication routines can be determined more

precisely than generating point to point communication for each pair of communicating pro-

cessors (e.g., see [19]), thereby enabling the compiler to generate better distributions.

5.1 Communication Primitives

In order to perform a collective communication on array elements, the communication primitive

needs the following information: send processors list, receive processors list, local index list of the

source array, and local index list of the destination array.

There are two ways of determining the above information. 1) Using a preprocessing loop to

compute the above values or, 2) based on the type of communication the above information may

be implicitly available, and therefore, not require preprocessing. We classify our communication

primitives into unstructured and structured communication, respectively.

Our structured communication primitives are based on a logical grid con�guration of the pro-

cessors. Hence, they use grid-based communications such as shift along dimensions, broadcast

along dimensions, etc. The following summarizes some of the structured communication primitives

implemented in our compiler.
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� transfer: Single source to single destination message.

� multicast: Broadcast along a dimension of the logical grid.

� overlap shift: Shifting data into overlap areas in one or more grid dimensions. This is

particularly useful when the shift amount is known at compile time. This primitive uses that

fact to avoid intra-processor copying of data and directly stores data in the overlap areas [20].

� temporary shift: This is similar to overlap shift except that the data is shifted into a

temporary array. This is useful when the shift amount is not a compile time constant. This

shift may require intra-processor copying of data.

� concatenation: This primitive concatenates a distributed array and the resultant array ends

up in all the processors participating in this primitive.

We have implemented two sets of unstructured communication primitives: 1) where the com-

municating processors can determine the send and receive lists based only on local information, and

hence, only require preprocessing that involves local computations, [9] and 2) where to determine

the send and receive lists preprocessing itself requires communication among the processors [21].

� precomp read: This primitive is used to bring all non-local data to the place it is needed

before the computation is performed.

� postcomp write: This primitive is used to store remote data by sending it to the processors

that own the data after the computation is performed. Note that these two primitives require

only local computation in the preprocessing loop.

� gather: This is similar to precomp read except that preprocessing loop itself may require

communication.

� scatter: This is similar to postcomp write except that preprocessing loop itself may require

communication.

The compiler must recognize the presence of collective communication patterns in the computa-

tions in order to generate the appropriate communication calls. Speci�cally, this involves a number

of tests on the relationships among the subscripts of various arrays in a forall statement. These
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tests should also include information about array alignments and distributions. We use pattern

matching techniques similar to those proposed by Li and Chen [22]. Further, we extend the above

tests to include unstructured communication. Table 1 shows the patterns of communication prim-

itives used in our compiler. The details of our communication detection algorithm can be found in

[7].

Steps (lhs,rhs) Comm. primitives

1 (i; s) multicast

2 (i; i+ c) overlap shift

3 (i; i� c) overlap shift

4 (i; i+ s) temporary shift

5 (i; i� s) temporary shift

6 (d; s) transfer

7 (i; i) no communication

8 (i; f(i)) precomp read

9 (f(i); i) postcomp write

10 (i; V (i)) gather

11 (V (i); i) scatter

12 (i; unknown) gather

13 (unknown; i) scatter

Table 1: Communication primitives based on the relationship between lhs and rhs array subscript

reference patterns for block distribution. (c: compile time constant, s, d: scalar, f : invertible

function, V : an indirection array).

5.2 Communication Generation

Having recognized the type of communication in each dimension of an array for structured commu-

nication or each array for unstructured communication in a forall statement, the compiler needs to

perform appropriate program transformations. We now illustrate these transformations with the

aid of two examples.

Example 1 (multicast) Consider the statement where A(I; J), and B(I; J) are aligned with

TEMPL(I; J).

FORALL(I=1:N,J=1:M) A(I,J)=B(I,3)

The second subscript of B marked as multicast and the �rst one as no communication.
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1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

2. call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st

3. call set_DAD(B_DAD,.....) ! put information for B into B_DAD

4. call multicast(B, B_DAD, TMP,source_proc=global_to_proc(3), dim=2)

5. DO I=lb,ub,st

6. DO J=lb1,ub1,st1

7. A(I,J) = TMP(I)

8. END DO

In the above code, the set BOUND primitive (line 1) computes the local bounds for computation

assignment based on the iteration distribution (Section 4). In line 2, the primitive set DAD is used

to �ll the Distributed Array Descriptor (DAD) associated with array B so that it can be passed to

the multicast structured communication primitive at run-time. The DAD has su�cient information

for the communication primitives to compute all the necessary information including local bounds,

distributions, global shape, etc. Line 4 shows a broadcast along dimension 2 of the logical processor

grid by the processors owning elements B(I; 3), 1 � I � N .

In distributed memory MIMD architectures, there is typically a non-trivial communication

latency or startup cost. Hence, it is attractive to vectorize messages to reduce the number of

startups. For unstructured communication, this optimization can be achieved by performing the

entire preprocessing loop before communication so that the schedule routine can combine messages.

The preprocessing loop is also called the \inspector" loop [23, 9].

Example 2 (gather) Consider the statement

FORALL(I=1:N) A(I)=B(V(I))

The array B is marked as requiring gather communication since the subscript can only be

known at runtime. The receiving processors can know what non-local data they need from other

processors, but a processor may not know what local data it needs to send to other processors.

For simplicity, in this example we assume that the indirection array V is replicated. If it is not

replicated, the indirection array must also be communicated to compute the receive list on each

processor.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st
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4 receive_list(count)=global_to_proc(V(i))

6 local_list(count) = global_to_local(V(i))

7 count=count+1

8 END DO

9 isch = schedule2(receive_list, local_list, count)

10 call gather(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

Once the scheduling is completed, every processor knows exactly which non-local data elements

it needs to send to (and receive from) other processors. The task of scheduler2 is to determine

exactly which send and receive communications must be carried out by each processor. The sched-

uler �rst �gures out how many messages each processor will have to send and receive during the

data exchange. Each processor computes the number of elements (receive list) and the local index

of each element it needs from all other processors. In schedule2 routine, processors communicate to

combine these lists (a fan-in type of communication). At the end of this processing, each processor

contains the send and receive list. After this point, each processor transmits to the appropriate

processors a list of required array elements (local list). Each processor now has the information

required to set up the communication schedule.

The schedule isch can also be used to carry out identical patterns of data exchanges on several

di�erent, but identically distributed arrays or array sections. The same schedule can be reused

repeatedly to carry out a particular pattern of data exchange on a single distributed array. In these

cases, the cost of generating the schedules can be amortized by executing it only once. This analysis

can be performed at compile time. Hence, if the compiler recognizes that the same schedule can

be reused, it does not generate code for scheduling but passes a pointer to the already existing

schedule.

The gather and scatter operations are powerful enough to provide the ability to read and

write distributed arrays with vectorized communication facility. These two primitives are available

in PARTI (Parallel Automatic Runtime Toolkit at ICASE) [23] designed to e�ciently support

irregular patterns of distributed array accesses. PARTI and other communication primitives and
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intrinsic functions form the run-time support system of our Fortran 90D compiler.

6 Run-time Support System

The Fortran 90D/HPF compiler relies on a very powerful run-time support system. The run-time

support system consists of functions that can be called from the node programs of a distributed

memory machine. Intrinsic functions support many of the basic data parallel operations in Fortran

90. They not only provide a concise means of expressing operations on arrays, but also identify

parallel computation patterns that may be di�cult to detect automatically. Fortran 90 provides

intrinsic functions for operations such as shift, reduction, transpose, reshape, and matrix multipli-

cation. The intrinsic functions that may induce communication can be divided into �ve categories

as shown in Table 2.

Table 2: Fortran90D/HPF Intrinsic Functions

1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Special

communication communication routines

CSHIFT DOTPRODUCT SPREAD PACK MATMUL

EOSHIFT ALL, ANY UNPACK

COUNT RESHAPE

MAXVAL, MINVAL TRANSPOSE

PRODUCT

SUM

MAXLOC, MINLOC

The �rst category requires data to be transferred using fewer overhead structured shift com-

munications operations. The second category of intrinsic functions require computations based

on local data followed by the use of a reduction tree on the processors involved in the execution

of the intrinsic function. The third category uses multiple broadcast trees to spread data. The

fourth category is implemented using unstructured communication patterns. The �fth category is

implemented using existing research on parallel matrix algorithms [16]. Some intrinsic functions

can be further optimized for the underlying hardware architecture.

Table 3 presents a sample of performance numbers for a subset of the intrinsic functions on

iPSC/860. A detailed performance study is presented in [14]. The times in the table include
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both the computation and communication times for each function. For most of the functions we

were able to obtain almost linear speedups. In the case of the TRANSPOSE function, going from

one processor to two or four actually results in an increase in the time due to communication

requirements. However, for larger size multiprocessors the times decrease, as expected.

Table 3: Performance of some Fortran 90D Intrinsic Functions (time is in milliseconds).

Nproc ALL ANY MAXVAL PRODUCT DOT PRODUCT TRANSPOSE

(1K x 1K) (1K x 1K) (1K x 1K) (256K) (256K) (512 x 512)

1 580.6 606.2 658.8 90.1 164.8 299.0

2 291.0 303.7 330.4 50.0 83.0 575.0

4 146.2 152.6 166.1 25.1 42.2 395.0

8 73.84 77.1 84.1 13.1 22.0 213.0

16 37.9 39.4 43.4 7.2 12.1 121.0

32 19.9 20.7 23.2 4.2 7.4 69.0

Arrays may be redistributed across subroutine boundaries. A dummy argument that is dis-

tributed di�erently from its actual argument in the calling routine is automatically redistributed

upon entry to the subroutine by the compiler, and is automatically redistributed back to its original

distribution at subroutine exit. These operations are performed by the redistribution primitives

which transform from block to cyclic or vice versa.

When a distributed array is passed as an argument to some of the run-time support primitives,

it is also necessary to provide information such as its size, distribution among the nodes of the

distributed memory machine, etc. All this information is stored into a structure called distributed

array descriptor (DAD) [14].

7 Experimental Results

To illustrate the performance of our compiler, we present benchmark results from four programs and

the �rst 10 Livermore loop kernels. Gauss solves a system of linear equations with partial pivoting.

Nbody program simulates the universe using the algorithm in [16]. Option program predicts the

stock option pricing using stochastic volatility European model. Pi program calculates the value

of �, using numerical integration. The Livermore kernels are 24 loops abstracted from actual

production codes that have been widely used to evaluate the performance of various computer
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Table 4: Comparison of the execution times of the hand-written code and Fortran 90D compiler

generated code for several applications. (Intel iPSC/860, time is in seconds).

Number of PEs

Program Problem Size 1 2 4 8 16

Gauss Hand 1023x1024 623.16 446.60 235.37 134.89 79.48

Gauss F90D 1023x1024 618.79 451.93 261.87 147.25 87.44

Nbody Hand 1024x1024 6.82 1.74 1.29. 0.76 0.42

Nbody F90D 1024x1024 13.82 5.95 2.40 1.31 0.86

Option Hand 8192 4.20 3.14 1.60 0.83 0.43

Option F90D 8192 4.30 3.19 1.64 0.84 0.44

Pi Hand 65536 0.398 0.200 0.101 0.053 0.030

Pi F90D 65536 0.411 0.207 0.104 0.054 0.032

systems. Data for all programs were block distributed and were written outside of the compiler

group at NPAC by experienced message passing programmers.

Tables 4 and 5 show the performance of compiler generated codes (F90D=HPF ) and hand-

written f77+MP code. The tables contain data from running these programs with a varying number

of processors on Intel iPSC/860. The compiler generated codes and hand-written codes use the

Express message passing library. Timings were taken using extime() function having an accuracy of

one microsecond. The programs were compiled by using Parasoft Express Fortran compiler, which

calls Portland Group if77 release 4.0 compiler with all optimizations turned on (-O4).

We observe that the performance of the compiler generated codes are usually within a factor of 2

of the hand-written codes. This is due to the fact that an experienced programmer can incorporate

more optimizations than our compiler currently does. For example, a programmer can combine

or eliminate some of the communication or some of the intra-processor temporary copying. The

compiler uses a more generic packing routine, whereas a programmer can combine communication

for the same source and destination for di�erent arrays. Another observation is that our run-time

system shift routine is slower than the programmer's shift routines.
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Table 5: Comparison of the execution times of the hand-written code and Fortran 90D compiler

generated code for the �rst 10 Livermore loop kernels. Data size is 16K real. (a 16 node Intel

iPSC/860, time is in milliseconds).

Loop number Type of Application F90D/HPF Hand Ratio

1. Hydrodynamics 2.545 2.550 0.9980

2. Incomplete Cholesky 11.783 10.440 1.1286

3. Inner product 3.253 3.249 1.0012

4. Banded linear equations 5.139 3.212 1.600

5. Tridiagonal elimination 30928.6 30897.7 1.001

6. Linear recurrence relations 1849.1 1886.5 0.9801

7. Equation of state 11.346 3.704 3.0632

8. A.D.I 38.656 20.038 1.9291

9. Numerical Integration 2.255 2.441 0.9238

10. Numerical Di�erentiation 9.814 4.589 2.1386

8 Summary of Related Work

Callahan and Kennedy [24] proposed distributed-memory compilation techniques based on data-

dependence driven program transformations. These techniques were implemented in a prototype

compiler in the ParaScope programming environment. Currently, a Fortran 77D compiler is being

developed at Rice [25, 26]. The Fortran 77D compiler introduces and classi�es a number of ad-

vanced optimizations needed to achieve acceptable performance; they are analyzed and empirically

evaluated for stencil computations. SUPERB [5] is a semi-automatic parallelization tool designed

for MIMD distributed-memory machines. It supports arbitrary user-speci�ed contiguous rectangu-

lar distributions, and performs dependence analysis to guide interactive program transformations.

KALI [27, 9] is the �rst compiler system that supports both regular and irregular computations on

MIMD machines. KALI requires that the programmer explicitly partition loop iterations onto the

processor grid. An inspector/executor strategy is used for run-time preprocessing of the commu-

nication for irregularly distributed arrays. Dataparallel C [28, 29] is a variant of the original C*

programming language, designed by Thinking Machines Corporation for its Connection Machines

processor array. Data parallel C extends C to provide the programmer access to a parallel virtual

machine. ARF is a compiler for irregular computations [30, 31, 21]. Saltz et al. describe and

experimentally characterize ARF compiler and runtime support procedures that embody methods
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capable of handling a wide range of irregular problems in scienti�c computing. Many techniques,

especially the unstructured communication of the Fortran 90D/HPF compiler are adapted from the

ARF compiler. The ADAPT system [32] compiles Fortran 90 for execution on MIMD distributed

memory architectures. The ADAPTOR [33] is a tool that transforms data parallel programs writ-

ten in Fortran with array extensions and layout directives to explicit message passing. Li and Chen

[22, 34] describe general compiler optimization techniques that reduce communication overhead for

Fortran-90 implementation on massivelly parallel machines. Our compiler uses pattern matching

techniques to detect communication similar to Li and Chen's. Sabot [35] describes the techniques

used by the CM compiler to map the �ne-grained array parallelism of languages such as Fortran

90 and C* onto the Connection Machine architectures.

9 Summary and Conclusions

Fortran 90D/HPF is a language that incorporates parallel constructs and allows users to specify

data distributions. In this paper, we have presented a design for a Fortran 90D/HPF compiler for

distributed memory machines. Speci�cally, techniques for the processing of distribution directives,

computation partitioning, communication detection, and generation were presented. Our design is

both e�cient and portable. We presented preliminary performance results from our compiler.

We believe that the methodology presented in this paper to compile Fortran 90D/HPF can be

used by the designers and implementors of the HPF compiler.
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