A Topology Viewer For Distributed Brokering Systems

Amey Dharurkar, Shrideep Pallickara, Geoffrey Fox
Community Grids Lab
Indiana University

http://www.naradabrokering.org
Talk Outline

• Introduction
• Related Work
• Our approach
• Results
• Conclusions and Future Work
Introduction

- Network ⇔ Graph Visualization
- Challenges
 - Scalability – Displaying large number of nodes and links on screen without losing context.
 - Navigation and Efficiency – Traversing through the networked graph and fetch the information associated with the components.
 - Adaptability – Reconstruction of the graph depending upon dynamic change in the components.
- Typical Graph – Hierarchical in nature
 - Clustering technique helps maintain abstraction

http://www.naradabrokering.org
Related Work – I

- **Treemaps – Space Filling method.**
 - Nodes are represented by rectangles. Rectangles are packed in 2D plane.
 - 100% utilization of the space.
 - Not scalable.

- **Cone Trees**
 - Rooted tree layout
 - Children are placed on the circumference around the cone.
 - Limitation on size of the graph.
Related Work – II

- 3D Layout
 - Use of Hyperbolic geometry
 - Rendering is time consuming

- RINGS
 - Children placed as equal size circles in the concentric rings around center of the parent circle.
 - Minimum edge crossings.
 - Easy navigation – Clicking on the node makes it the focus while overall context is maintained.
NaradaBrokering Overview

- Open source project. http://www.naradabrokering.org
- Provides a variety of services
 - Reliable, ordered and exactly once delivery.
 - Compression and fragmentation of large payloads.
 - Performance Monitoring service
 - Support for multiple subscription types
- Used in the context of A/V applications and to enhanced Grid apps such as Grid-FTP
- Provides support for variety of transports: TCP, UDP, HTTP, SSL, Multicast and parallel TCP streams.
- JMS compliant. Will provide WS-Notification support.
- Includes bridge to GT3. April 2004 release.
- Support for Web Services being incorporated.

http://www.naradabrokering.org
NaradaBrokering: Topology Viewer Goals

- NaradaBrokering
 - Runs on large number of co-operating broker nodes.
 - Broker Node is smallest unit and is used to route messages encapsulating any sort of information.
 - Inherent hierarchical nature. Four levels of clusters and so four levels of abstractions.

- Goals of the Topology Viewer
 - Should be quite scalable (Max Nodes = 32 * 32 * 32 * 32)
 - Algorithmic and Navigational efficiency.
 - Incorporate dynamic changes in the network with minimum variation in the layout.
Layout Algorithm

- Node Placement
 - Graph placed inside a BIG circle. Highly Symmetric.
 - Each level (Super Super Cluster, Super Cluster, Cluster and Broker Node) is represented by a circle and components in a same level are placed inside the parent circle.
 - As opposed to RING scheme, children are placed in a single ring instead of multiple concentric rings
 - Improves calculation and navigational efficiency BUT poor space utilization
 - If n children inside parent and then angular separation is $2\pi / n$.

http://www.naradabrokering.org
Layout Algorithm – Continued

- Radius of a circle can be easily calculated. If angular separation is Θ then the radius would be $R \sin(\Theta/2)$. R is the radius of parent circle.

- Decision whether a component lie on the screen is simple. Due to abstraction, the decision can be made with few comparisons.

- Based on the mouse coordinates, unique node can be located with few comparisons.

- Edge Placement
 - Straight edges reduce drawing and calculation overhead. Minimizing edge crossings.
 - Edges between nodes at diff levels in diff colors.

http://www.naradabrokering.org
Sample View – Explanation

- Entire Diagram lies inside in BIG virtual circle.
- Outermost circles represent super-super clusters, then super-clusters and so on.
- Cluster/ Node Ids are shown at the top.
- Edges are straight and have different colors.

http://www.naradabrokering.org
Navigation – Translation

- Difference between the old center of the graph and the new focus is calculated.
- All the centers of components are recalculated.
- Circle - Best choice as it can described by only two parameters (x, y)
- Whole graph is shifted so that new focus becomes center of the screen.
Navigation - Zoom In/Out

- Two figures correspond to views before and after zooming.
- Radius of each circle is increased by fixed constant.
- Center of the outermost virtual circle is recalculated.
- Whole picture is redrawn on the screen.

http://www.naradabrokering.org
Performance – Drawing Response

- The system has been tested up to 10000 nodes.
- Restricted view (Few components), display time reduces (due algorithmic and visual simplicity)
- Degree of independence on the number of nodes in system is high. Hence Scalable.

http://www.naradabrokering.org
Performance – Zoom Operations

- Adjacent graph shows time required to perform all recalculations and excludes the display time.
- As expected the response time increases linearly with number of nodes.
- Time is in tens of milliseconds is small fraction of actual display time. So does not involve significant overhead compared to display time.

http://www.naradabrokering.org
Performance – Node Operations

- Complexity for determining a node address from \((x, y)\) coordinates is also \(O(N)\). Because of symmetry in the system such decision can be made in at most \(4 \times N\) comparisons.
- Independent on number of nodes in the system. Stabilizes after some node additions.
Conclusion and Future Work

- Very scalable and clear.
- Incorporate dynamic changes in the network.
- Algorithmic and visual simplicity.
- What Next!
 - Provide mechanism so that one can access to monitoring service associated with each node. Viewer acts as information fetching tool.
 - Allow user run their own instances of the viewer and synchronize them with the viewer running at main site.
Percentage Space Wasted

- Assume that Radius of the virtual circle is \(R \)
- If number of children (Super-super clusters) are \(N \)
- Total Available space is \(\pi R^2 \)
- Space used is \(N \times \pi \times R^2 \sin^2 \left(\frac{\pi}{N} \right) \)
- Percentage space wasted is \((1 - N \sin^2 \left(\frac{\pi}{N} \right)) \% \)
- As \(N \) increases, value of \(\sin^2 \left(\frac{\pi}{N} \right) \) decreases drastically and so more space is wasted.