Implementing a NTP-Based Time Service within a Distributed Middleware System

ACM International Conference on the Principles and Practice of Programming in Java (PPPJ ’04)

Hasan Bulut
Motivation

- Collaboration environments make use of distributed middleware systems to achieve collaboration among people geographically distributed.

- Time ordering of events generated by entities within a distributed infrastructure is far more difficult than time ordering of events generated by a group of entities having access to the same underlying clock.

- The Network Time Protocol has been around for more than a decade and being used in the Internet to let people to synchronize their computer clocks with atomic time servers clocks.

- So we would like to achieve time-ordering of events generated at different entities by providing a time service to the distributed middleware system.
Example Application

- An archiving system designed to archive the streams generated in a audio/video conferencing session(s)
- In a collaboration session, streams from these sources need to be synchronized for archival and replay purposes.
- Real-time constraints for audio/video conferencing applications can vary anytime between 30-100 msec, depending on the jitter and in inter-packet arrivals.
- In a distributed event brokering environment, RTP packets are considered as events.
- Time-ordering of these events are necessary to achieve an efficient archival/replay mechanism.
Computer Clocks I

- Computer timers keep time by using a quartz crystal and a counter.
- Two types of clocks on a computer: hardware and software.
- What causes computer clocks get out of sync?
 - run at different rates
 - manufacturing defects
 - environment: temperature change, electric and magnetic interference
 - CPU load
 - ill-behaved program
- So how much do they get out of sync?
Computer Clocks II

- **darya.ucs.indiana.edu** - Wed Mar 17 18:29:13 EST 2004
- **kamet.ucs.indiana.edu** - Wed Mar 17 18:18:03 EST 2004
Approaches to Order Events and Synchronize Clocks

- Approaches can be divided into two categories: software (SW) and hardware (HW)

- Logical timestamps (SW)
 - Lamport timestamps
 - Vector clocks

- Synchronizing system clocks (SW)
 - Cristian’s algorithm
 - Berkeley algorithm
 - Averaging algorithms (decentralized algorithms)

- Network Time Interface (NTI) M-Module – custom VLSI chip with interfaces to GPS receivers. (HW)
Network Time Protocol (NTP)

- NTP is used to synchronize timekeeping among a set of distributed time servers and clients.
- Formal specification for version 3 can be found in RFC-1305 http://www.ietf.org/rfc/rfc1305.txt
- It defines the architectures, algorithms, entities and protocols used by NTP.
- NTP is built on UDP/IP, which provides a connectionless mechanism.
NTP (con’t)

- Stratum number is an integer indicating the distance from the reference clock.
- Primary reference sources are synchronized by wire or radio.

Atomic time clock (Stratum-0)

- Stratum-1 time servers
- Stratum-2 time servers or clients
Roundtrip delay (δ) and offset (Θ) can be computed as follows:

- **Roundtrip delay (δ)**
 \[\delta = (T_4 - T_1) - (T_3 - T_2) \]

- **Offset (Θ)**
 \[\Theta = \frac{[(T_2 - T_1) + (T_3 - T_4)]}{2} \]

Diagram:
- A: Client
- B: Time Server
- Transmission time from A to B (t_{AB}) is $t_{AB} = T_2 - T_1$
- Transmission time from A to B (t_{BA}) is $t_{BA} = T_4 - T_3$
NaradaBrokering (NB)

- An event brokering middleware. Java Message Service (JMS) compliant
- Supports publish-subscribe messaging model with a dynamic collection of brokers.
- Provides services for TCP, UDP, Multicast, SSL, HTTP, HTTPS, raw RTP clients and storage services - SQL and file based.
- Supports audio-video conferencing, communication through firewalls and proxies, software multicast.
- Publish/subscribe of A/V
 - A A/V stream is regarded as a “topic” and each RTP packet from this stream is regarded as an “event” for this topic.
 - Only the sender of this stream can “publish” A/V events to this topic. Other endpoints need to subscribe to this topic in order to receive the stream.
- http://www.naradabrokering.org
NB Time Service

- NB Time Service runs in the kernel of NaradaBrokering.
- There are two important parameters:
 - Number of time servers
 - Time interval that the NB Time Service should run
- A number of time servers can be specified. There is no restriction.
- By default, NB Time Service uses 8 stratum-1 time servers and time interval for the service is set to 30 seconds, which means NB Time Service updates the offset every 30 seconds.
Unlike NTP daemons, NB Time Service does not change underlying system clock. Because
- changing underlying system clock requires administrator privileges
- the objective of this time service is to provide a mechanism to be able to time-order the events generated within NaradaBrokering.

Provides an interface, getTimestamp(), to get updated time in milliseconds.

Entities generating events in the system should utilize Time Service to timestamp the events.
Phase 1: collecting samples
Phase 2: filtering & adding to the queue
Phase 3: establishing candidate list & computing offset

offset1: Offset computed with regard to local computer time
offset2: Offset computed with regard to adjusted time
Phase 1: Getting samples from NTP time servers.
- NTP messages are sent to the time servers provided one by one.
- UDP connection is used to send these messages and the timeout is set to 500 ms.

Phase 2: Filtering and adding to the queue.
- Timestamps are checked to validate the received NTP reply message.
- For each time server a separate queue is provided to keep the previous NTP samples. Queue length is finite. First-In-First-Out (FIFO) scheme is used to accommodate new samples when this queue is full.
Phase 3: Selection and combine algorithms.
- Using clustering algorithms a candidate list is constructed.
- Clustering algorithm uses synchronization distance related to each time server to find the candidate list. It is a parameter computed from roundtrip delay and dispersion.

Updating Offset
- Calculating offset as described is not sufficient to achieve time-ordering of events.
- Offset is updated unless adjusted time goes backwards.
Test Results I

- ntpd daemon is running and it synchronizes its time with “time.nist.gov” time server.
- Out of 5690 samples only 24 of them are different than zero for this experiment.

Change of offset with time for darya.ucs.indiana.edu

Numeric values for darya.ucs.indiana.edu

- OS: Red Hat Linux release 7.3 (Valhalla)
- CPU: AMD Athlon(tm)MP 1800+, 1533.42 MHz
- Memory: 512 MB
- JVM version: 1.4.1_03
 - initialization offset value: 0 ms
 - standard deviation: 0.11
 - average: -0.00018 ms
 - min value: -2 ms
 - max value: 3 ms
 - total change: -1 ms
 - number of data: 5690
 - total test duration: 172800 sec
The first offset value is -139895 ms, which shows how much the clock in that machine is ahead of the real time.

The change of offsets is between (-3) - (2) ms.
Client discrepancy measures how much clocks of these clients are consistent with each other.

- t_{AB} and t_{BA} can be ignored if roundtrip delay is very small.
- If t_{AB} and t_{BA} are ignored (or if they are approximately equal to each other), the discrepancy (ΔT) between these two clocks can be approximated as

$$\Delta T = 0.5 * (T_2 + T_3 - T_1 - T_4)$$
Test duration is 143 minutes
Absolute maximum discrepancy is 2 msec
Absolute minimum discrepancy is 0 msec
The roundtrip delay between two machines is around 2 – 4 msec.
Average discrepancy for this test is 0.082 msec.
Conclusion

- Different machines with different platforms and with different loads may have different clock rates which in time would get out of sync.
- One cannot rely on the underlying clock and use the system clock to timestamp the events generated in messaging systems.
- Real-time constraints for collaboration environments is around 100 msec. NTP provides a sufficient synchronization range for such a collaboration environment.
- Stratum-1 servers should be chosen so that the roundtrip time between time servers and the local machine is minimized.
- A Buffering Service has been implemented for NaradaBrokering which enables total order and time-ordered delivery.