High Performance Clustering of Social Images in a Map-Collective Programming Model
Bingjing Zhang, Judy Qiu
Department of Computer Science, Indiana University Bloomington

Abstract
Large-scale iterative computations are common in many important data mining and machine learning algorithms. Most of these applications can be specified as iterations of MapReduce computations, leading to the Iterative MapReduce programming model [1] for efficient execution of data-intensive iterative computations interoperably between HPC and cloud environments. We observe that a systematic approach to collective communication is essential but notably missing in the current model. Thus we generalize the iterative MapReduce concept to Map-Collective on the premise that large collectives are a distinctive feature of data intensive and data mining applications. To show the necessity of Map-Collective model, this paper studies the implications of large-scale social image clustering problems, where 10-100 million images represented as points in a high dimensional (up to 2048) vector space are required to be divided into 1-10 million clusters.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Systems – Distributed applications.

Keywords
Social Images, Data Intensive, High Dimension, Iterative MapReduce, Collective Communication

1 Major Results
Data mining dominated by collectives with large size 512 MB messages requires new technologies. Our new broadcast collective is four times faster than the best Java MPI and gives 20% better performance than the fastest C/C++ MPI methods, in addition to factor of 5 improvement over a non-optimized (for topology) pipeline-based method on 150 nodes (see Figure 1). Our new algorithm scales much better than Spark [2]. Local aggregation in Map stage reduces the size of 20 TB intermediate data by at least 90%. These communication improvements will be combined with triangle inequality optimization [3] (Elkan’s algorithm [4] extended for large problem sizes). Different optimizations for Azure give Twister4Azure [5] better performance than current MapReduce and Iterative MapReduce Azure platforms.

2 Experiment
To execute an image clustering application with 7 million image feature vectors and 1 million clusters, we use 10,000 Map tasks (125 nodes, each of which has 8 cores). In broadcasting, the root node broadcasts 512 MB of cluster center data to all nodes. Thus the overhead of a sequential broadcasting is substantial.

3 Novel Collective
We propose a topology-aware pipeline-based chain method to accelerate broadcasting for the Iterative MapReduce model. More details can be found at [6].

Copyright © 2013 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SoCC’13, 1—3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2525952
4 References


