Scalable Dimension Reduction for Large Abstract Data Visualization

Seung-Hee Bae, Judy Qiu, and Geoffrey Fox
{sebae, xqiu, gcf}@indiana.edu

Abstract - The ability to browse vast amounts of scientific data is critical to facilitate science discovery. High performance Multidimensional Scaling (MDS) algorithm makes it a reality by reducing dimensions so that scientists can gain insight into data set from a 3D visualization space. As multidimensional scaling requires quadratics order of physical memory and computation, a major challenge is to design and implement parallel MDS algorithms that can run on multicore clusters for millions of data points. Bases on our early work of parallel SMACOF algorithm, the authors have developed an interpolated approach, majorizing interpolation MDS (MI-MDS). It utilizes the known mapping from a subset of given in-sample data to effectively reduce computational complexity with minor cost of approximation. MI-MDS makes it possible to process huge data set with modest amounts of computation and memory requirements. Our experimental results show that the quality of interpolated mapping is comparable to that of the original SMACOF in a million chemical compounds data, where we construct a configuration of over two-million out-of-sample data into target dimension space.

Keywords: Multidimensional Scaling; Parallelism; Interpolation

Parallel MDS via MPI

Implement an MDS algorithm called SMACOF, which consists of matrix multiplications and updating status data, in parallel via MPI.

Parallel Interpolation Approach to MDS (MI-MDS)

Multidimensional scaling (MDS) is a general term for techniques of constructing a mapping for generally high-dimensional data into a target dimension with respect to the given pairwise proximity information. Mostly, MDS is used for achieving dimension reduction to visualize high-dimensional or abstract data into Euclidean low-dimensional space, i.e. 2D or 3D.

Parallel runtime and efficiency of Large Scale Data

Benefits of Interpolation Approach

- Reduce the resource requirements.
 - Memory: $O(N^2) \rightarrow O(n)$
 - Computing: $O(N^2) \rightarrow O(nM)$
- Pleasingly Parallel Application.
- Mapping quality is good enough.
- Extend computational capacity of MDS algorithm into millions of points.

Acknowledgement

This work is partially funded by National Institutes of Health grant 1RC2HG005806-01 and Microsoft Research. We would like to thank Prof. Wild and Dr. Zhu for providing chemical compounds data.