
A Scripting based Architecture for Management of Streams
and Services in Real-time Grid Applications

Harshawardhan Gadgil1, Geoffrey Fox1, Shrideep Pallickara1, Marlon Pierce1,
Robert Granat2

1Community Grids Lab, Indiana University, Bloomington IN – 47404
hgadgil@cs.indiana.edu, (gcf@, spallick@, marpierc@)indiana.edu

2NASA, Jet Propulsion Lab, Pasadena, CA – 91109
granat@aig.jpl.nasa.gov

Abstract

Recent specifications such as WS-Management and
WS-Distributed Management have stressed the
importance of management of resources and services and
propose methods towards querying Web Services to
gather the meta-data associated with these services.
Management often entails system setup, querying system
metadata, manipulation of system parameters at runtime
and taking actions based on the system parameters to
tune system performance.

Real-time applications require rapid deployment of
application components and demand results in real-time.
In this paper we present the HPSearch system which
enables dynamic management of the system including
both streams and Web Services, and rapid deployment of
applications via a scripting interface. We illustrate the
functioning of the system by modeling a data streaming
application and rapidly deploying the system and
application components.

KEYWORDS: System Management, Data streaming,
Grids, Scripting, Managing middleware

1 Introduction

Many applications require filtering of data before they
can process the data. These data filtering applications are
often deployed statically while the data is transferred
using files. Each application reads data from one or more
input files and creates one or more output files which are
then transferred to the next application. An obvious
disadvantage of this solution is the inefficient utilization
of space (for storing temporary data) and time (for getting
the entire data processed); a feature not desired in real-
time applications. Real-time applications require data
processing and results in real-time and usually employ
data streaming to achieve high performance. In a world
where every data source is potentially distributed,

filtering this data to suit the needs of a particular
application at run-time is a challenge and is usually
addressed by employing distributed data processing.

Applications which generate or work on huge data sets
such as Audio / Video applications and earthquake
modeling in critical infrastructure systems require data
filters to reduce the size of data to achieve high
performance. Data filtering may also be employed to
rearrange data in a specific format before data processing
can begin.

With the growing complexity of systems, the
management of these systems has increased in
importance. We view system management in two parts
namely (1) Deployment of system components (2)
Querying dynamic system meta-data for anomalies and
changing the parameters of the system to improve the
performance of the system.

To address the issues of system management and rapid
deployment of distributed services for real-time
processing, we introduce the HPSearch system. HPSearch
helps us to setup distributed service applications and
manage the data streams using a high performance
messaging substrate, NaradaBrokering (Refer Section
1.1). HPSearch takes the view that a stream of data can be
broken into small messages and thus data transfer can be
made using messaging. HPSearch also presents interfaces
to quickly create data filtering applications or create
pluggable components from existing applications and
expose them as a Web Service.

The rest of this paper is organized as follows. We
continue the discussion below with an introduction to the
NaradaBrokering system. Section 2 describes the
HPSearch architecture. Section 3 introduces our test
application and illustrates how we can use the scripting
interface to setup the system and deploy the application.
Section 4 presents related work. In sections 5 and 6 we
outline future work and conclusions respectively.

1.1

2.1

2.2

NaradaBrokering
NaradaBrokering [1, 2, 3] is an event brokering system
designed to run on a large network of cooperating broker
nodes. Communication within NaradaBrokering is
asynchronous and the system can be used to support
different interactions by encapsulating them in specialized
events. NaradaBrokering guarantees delivery of events in
the presence of failures and prolonged client disconnects,
and ensures fast dissemination of events within the
system. Events could be used to encapsulate information
pertaining to transactions, data interchange, system
conditions and finally the search, discovery and
subsequent sharing of resources.

We summarize some of the important features of
NaradaBrokering as follows

 Implements high-performance protocols
(message transit time of 1 to 2 ms per hop)

 Order-preserving optimized message transport
 Quality of Service (QoS) and security profiles

for sent and received messages
 Interface with reliable storage for persistent

events, reliable delivery via WS-Reliable
Messaging [4]

 Support for different underlying transport
implementations such as TCP, UDP, Multicast,
SSL, RTP, HTTP

 Discovery Service to find nearest brokers /
resources

2 HPSearch

We have been developing HPSearch [5] as an extension
to an existing scripting language that binds Uniform
Resource Identifiers (URI) to the scripting language. By
binding URI as a first-class object we can use the
scripting language to manage the resource identified by
the URI. Thus, we can read information in the form of
messages from arbitrary streams (specified by a topic
URI) such as performance monitoring services and
service metadata publishers. Other possible actions
include reading databases and reading from or writing to
files and sockets. We have implemented a simple scheme
to map the results of database queries to XML for
streaming purposes.

HPSearch uses NaradaBrokering to route data between
components of a distributed application. This data
transfer is handled transparently by the HPSearch runtime
using NaradaBrokering. Further, each of the distributed
components is exposed as a Web Service which can be
initialized and steered by simple SOAP requests.

HPSearch is currently implemented using Mozilla Rhino
[6], a Java based implementation of Javascript although

other scripting languages like Python or Jython may be
supported in the future. Rhino allows us to create custom
host-objects that help to dynamically access the host
system. This feature can be useful to create objects that
help manipulate data streams and aid system management
tasks such as discovering services and data sources,
initializing these services and steering them.

Architecture

Figure 1 shows the HPSearch architecture and its
components. As shown in the figure, HPSearch consists
of one or more HPSearch Kernel. Each of these kernels
consists of a management and control shell (currently a
Javascript based shell), a Service Manager and other
system objects. We also provide an interface (WSProxy)
to compose services that can process data in a stream. The
WSProxy ensures that the data flow between the
components of any application flows directly between the
components and does not involve the HPSearch kernel.

Kernel Components

Shell: The shell is a command line interface based on
Mozilla Rhino. Scripting provides numerous advantages
as observed by [7]. The Shell contains the various system
management objects that help us to setup and manage the
system.

NaradaBrokering Objects: These objects are specific to
the NaradaBrokering system and aid system management
tasks in NaradaBrokering. We illustrate below, two of the
currently implemented objects, namely NaradaBroker
and PerfMetrics.

NaradaBroker is a front-end for instantiating new
brokers and links between brokers for system setup or for
efficient routing. This may be combined with the
performance metrics for creating new brokers and links
between existing brokers to achieve higher throughput by
avoiding busy routes. For example the following code
creates a linear topology consisting of 3 brokers as shown
in Figure 2.

b = new NaradaBroker

("school.cs.indiana.edu");
b.create("");
b_connLink = b.connectTo

("156.56.104.170",
"5045", "t", "");

b.requestNodeAddress(
"156-56-104-176.dhcp-

bl.indiana.edu:5045",
"0");

c = new NaradaBroker

("trex.ucs.indiana.edu");
c.create("");
c_connLink = c.connectTo

("156.56.104.170",
"5045", "t", "");

c.requestNodeAddress(
"156-56-104-176.dhcp-

bl.indiana.edu:5045",
"0");

The PerfMetrics object reads the performance
metrics published by NaradaBrokering’s Performance
Monitoring Service on a specialized topic for
performance data (such as cgl/narada/perfdata).
The performance monitoring service regularly sends
messages containing the aggregated metrics on the
existing brokers and links in the system. These metrics
are stored by the HPSearch engine, which allows
querying of these metrics using the scripting interface. As
an illustration, the following code queries the
accumulated metrics to find a link with an average
latency greater than 5.0 and then re-queries to find the
jitter for such a link.

badLink = PerfMetrics.query(

"//link[avgLatency > 5.0]/@id");

for(i = 0; i < badLink.length; i++) {

jitter = PerfMetrics.query(

"//link[@id='" +
badLink[i] +
"']/jitter");

Sys.print("Link: " + badLink[i]
 + "Jitter: " + jitter);

}

Here we can use XPath expressions to query the
performance metrics.

Service Manager: In order to set up an application using
distributed services, we create host-objects to describe the
components of the application. These components may be
discovered dynamically at runtime using one or more
discovery mechanisms [8, 9]. The Service Manager then
distributes the task of handling these components to other

trex.cs.indiana.edu

156.56.104.170

HPSearch Shell

school.cs.indiana.edu
Link between
brokers

Figure 2: Creating Brokers and Links

Request Handler

Javascript Shell

Service Manager

Web Service EP

Other Objects

HPSearch

URIHandler

DBHandler

WSDLHandler

WSProxyHandler

Request Handler

HPSearch

HPSearch
Kernel

Broker Network

DataBase

Web
Service

Files, Sockets,
Topics

Figure 1: HPSearch Architecture

 WSProxy

Service

 WSProxy

Service

Stream Proxy
Kernel connects to nearest
broker and communicates
with other kernels with
messages

Handlers steer web
services via simple
SOAP requests

Data Flows as a stream
of messages between
WSProxies through the
brokering network

Data is read / written from /
to various data resources

HPSearch engines. This may be done to achieve load-
balancing when necessary.

Request Handler: On receiving a service description, the
HPSearch kernel spawns a RequestHandler. The request
handler contains handlers for initializing and managing a
specific type of resource as identified by the URI in
question. Thus we have handlers for handling database
requests (Read data from database as a result of an SQL
query), handling generic URIs (files, sockets, topics),
handling simple web-service invocations (parse a given
WSDL and invoke an operation) and handle WSProxy
units. The request handler’s job is to monitor the
execution of the service assigned to it. This involves
monitoring notifications and errors generated by the
resource being handled and taking appropriate action.
Finally upon completion of the resource’s job, the request
handler notifies the kernel of the job completion.

2.3

2.4

WSProxy
The WSProxy (Web Service Proxy) is an Apache AXIS
[10] based wrapper which facilitates wrapping existing
programs as Web Services. WSProxy provides Java
interfaces to compose filtering applications in two
flavors, viz. Runnable and Wrapped.

The Runnable interface is used to create data filtering
applications that can be steered by simple SOAP requests
to the Web Service. This interface gives more control
over the steering of the service and is useful for
developing data processing applications that read a block
of data, process this data and send out the results
repeatedly.

The Wrapped interface is used to wrap existing
applications (For e.g., executables, Perl / Matlab scripts).
This interface provides lesser degree of control on the
steering and is limited to starting and stopping the service
only.

The WSProxy also wraps data input and output streams.
WSProxy views input and output URI as topics to which
it subscribes on behalf of the service. Furthermore as
events are delivered to the WSProxy by the brokering
system, the WSProxy buffers this data which then
constitutes the input stream for the application. Similarly,
when the application writes data out, the data is packed in
events and sent to the brokering system which is then
routed to its next destination. Thus the processing code is
just presented with the input and output streams and the
actual data streams are handled transparently.

The WSProxy also contains a component called
StreamProxy that helps to negotiate ideal transport
characteristics whenever possible.

We present below a proposed architecture of the
StreamProxy and discuss how it can help in optimizing
transport characteristics for high performance data
transfer.

Data Stream Negotiation
Recent specifications such as WS-Transfer [11] and WS-
Enumeration [12] that have been proposed allow
transferring service related data, resource properties and
other sequences of XML elements such as logs, message
queues or other linear information models using SOAP
based protocol. SOAP [13] provides a lightweight
protocol to exchange information in a decentralized,
distributed environment. WS-Enumeration defines a
simple SOAP based protocol that allows the data source
to provide a data abstraction called enumeration context
which represents a logical cursor through a sequence of
data items. The XML element information can then be
transferred using this enumeration context over a span of
one or more SOAP messages.

We present below a scheme to show how Web Services
can transport streams of messages. This only works for
streams (sets of messages) but this is perhaps the most
important case where performance is needed. The
essential ideas are as follows

 The SOAP header for messages in a stream share
unchanging data which needs to be transported
only once

 One negotiates using conventional SOAP over
HTTP regarding several issues such as the
optimal representation, transport protocol and
firewall/network Quality of Service (QoS) issues

 Data is transported on a different (in general)
channel in optimized fashion

 The optimized transport supports Web Service
Reliable Messaging so one can use UDP based
protocols with application layer reliability and
flow control.

 This mechanism can support Web Service
security

<soap:header>
 <flexContext>id</flexContext>
 <timestamp>...</timestamp>
 <messageID>...</messageID>
</soap:header>

<soap:body>
 ... Data Packet ...
</soap:body>

SOAP Message

Figure 3: Flexible Representation

To realize the maximum performance and high
throughput in case of a distributed data flow, the
WSProxy creates a StreamProxy component which would
allow the data transfer using SOAP messages as
explained above. StreamProxy would negotiate the best
possible transport characteristics for a particular
application. This negotiation occurs with the
NaradaBrokering substrate and is dictated by reliability,
volume, security and the rate of data transfer required by
a particular component. Finally, data can be sent using
simple SOAP requests containing the header (contains the
message and context ids) and the body (containing the
data).

This negotiation usually proceeds by exchanging simple
SOAP messages between the component and the
substrate. This negotiation can be similar to the
negotiation outlined in WS-Secure Conversation [14] or
creating a context data structure as outlined in WS-
Context [15]. At the end of negotiation both end-points
have agreed upon various features such as the type of
transport to use for data transfer (e.g. TCP, UDP),
whether to use security, security tokens (if applicable)
among other features of the transport. This data is called
as the FlexibleRepresentationContext. This context
contains sufficient information to process the transport of
data in full compliance with SOAP semantics.

Following the negotiation, the two endpoints create a
pathway depending on the agreed protocols. The data is
then sent on this pathway. Further, each packet of data
being sent is tagged with a
FlexibleRepresentationContextToken that uniquely

identifies the pathway characteristics. This would allow
the context to be located and referenced. Now to send
data using SOAP (or as stream of messages, in general),
we simply include the context token, message ids and
timestamp information in the SOAP header and the data
in the SOAP body as shown in the Figure 3.

3 Test Application

To demonstrate the use of our system, we considered
modeling the Regularized Deterministic Annealing
Hidden Markov model (RDAHMM) data analysis tool in
a distributed data flow. RDAHMM [16] is a time series
analysis program that uses a fit of a hidden Markov
model (HMM) to the data to determine, on a statistical
basis, the different modes of the system and their
probabilistic descriptions. It employs a regularized
deterministic annealing expectation-maximization
algorithm to optimize the model fit; this method greatly
reduces the risk of producing a sub-optimal solution for
complex, unconstrained time series data sets.

Our application consists of a GPS database that contains
surface displacement time series collection by the
Southern California Integrated Geodetic Network
(SCIGN). The GPS database gives out the readings which
contain the estimate and error values along with the date
and time of observation and the name of the observation
station. This data needs to be filtered to obtain only the
estimate and error values. The filtered data is then
analyzed by the RDAHMM application and the results of
the analysis along with the filtered data are fed to a

Kernel manages
(steers) the
various services

Sensor Network / GPS Database

RDAHMM

Data Filter

Matlab Script

Figure 4: Application Setup

WSProxy
wrapped service

Start Activity,
Web Service

HPSearch
Kernel

Service
distribution

Narada Broker
Virtual Data Flow
between various
components

Links between
Brokers

Actual Data Flow between
components takes place
through the brokering network

Matlab script to generate a graphical output that allows a
user to easily identify the modes in the time series and
determine which points or segments of interest lie in each
mode.
3.1

3.2

Setup
The test application setup is shown in Figure 4. Using the
WSProxy interfaces, we wrapped the GPS data filter, the
RDAHMM application and the Matlab script. The
WSProxy wrapper manages the data streams on behalf of
the wrapped services.

In order to quickly compose the above application we
also make use of the HPSearch’s administrative
functions. An important functionality is deploying
brokers and the links between them for rapid application
deployment. For our test application we used three
brokers in a linear fashion as shown in Figure 4.

The NaradaBrokering messaging middleware provides us
with a host of features such as reliable delivery,
multicasting, message level security and a variety of
transport protocols such as RTP, UDP and TCP.
Depending on the requirements of a particular
application, we can use different protocol for every data
stream link using flexible negotiation as discussed in
Section 2.4. The stream negotiation is important since it
would allow us to use the most optimal transport suited to
a particular application to achieve processing in real-time
or near real-time.

For our test data, we simulated a sensor data source that
outputs the date, time and the observed values. Since the
RDAHMM application requires only the observed values,
we install a filter (which is again a WSProxy based
Runnable filter that reads each observation, extracts the
relevant information and send the output to the
RDAHMM application). The RDAHMM process is
executed on these observations and the results sent to the
visualization service which creates a graph by combining
the results and observations.

The HPSearch Script

The HPSearch shell provides a suite of host-objects to
construct the data flow application and execute it. The
initialization works as follows.

First we deploy a virtual broker network (shown by
circles in Figure 4). A partial script to achieve the same is
shown below

b = new NaradaBroker(

"school.cs.indiana.edu");
b.create("");
b.connectTo("156.56.104.176",

"5045", "t", "");

b.requestNodeAddress(
"156-56-104-176.dhcp-

bl.indiana.edu:5045",
"0");

This creates a broker on the host
school.cs.indiana.edu and creates a link between it
and the broker on host 156.56.104.176. We can deploy
the other broker in a similar fashion (following the
discussion in Section 2.2). The next step is to deploy the
actual application. The steps followed are as follows.

The first step is to define the data streams used in the
process. Here we use the Non blocking TCP as the default
transport.

gpsDataTopic = "topic:///GPSData";
gpsFilteredData =

"topic:///GPSFilter/filteredData
";
gpsComputedData =

"topic:///GPSFilter/computedData
";

Then we define each data processing element and the
service parameters. For e.g. the RDAHMM service is
defined as follows

rdahmmfilter = "processes.RDAHMM";
rdahmmfilterLoc =
"http://trex.ucs.indiana.edu:6500/axis
/services/WSSConnector?wsdl";
rdahmm = new WSProxyResource(
 rdahmmfilter,rdahmmfilterLoc);

rdahmm.setInput(gpsFilteredData);
rdahmm.setOutput(gpsComputedData);

rdahmm.setParameter("OPTIONS",

"-D 3 -N 2 -output_type gauss –
regularize

-omega 0 0 1 1.0e-6 -anneal –
annealstep

0.01 -seed 1");

rdahmm.setParameter("VERBOSE", "NO");

Here we use a static location of the service’s WSDL file.
However we plan to use the Discover host-object when
implemented. This would serve as a front-end to a
discovery service, either based on NaradaBrokering or
some external registry service. The rest of the services are
similarly defined. The WSPRoxyResource is an
HPSearch object that encapsulates the description of the
WSProxy service.

Finally after all the components of the flow are defined
we create a Flow object and start the flow as follows.

f = new Flow();
f.addStartActivities(db);
f.addComponents(filter, rdahmm, viz);
f.start("1");

This step submits the flow component description to the
Flow Handler, which distributes the tasks to distributed
HPSearch engines using the Task scheduler. Here we also
distinguish between the start activities and the normal
components of the application. The start activities put the
data into the data flow and are started after all the
components have been initialized so that these services
are ready to process the data as it comes through.

Thus in our example the filter, RDAHMM, and the
visualization services are automatically started. Once the
shell’s flow handler receives a confirmation for the
initialization of these components, it signals the data
source to start sending the data. The data gets processed
at various steps as it percolates through various services.

Further using the scripting interface we can query the
flow status.

Sys.print("Flow Status: " +

 f.status())

4 Related Work

The art of scripting has been popular for quite some time
as a means of rapid application deployment medium.
Scripting presents a higher-level application interface and
glues together existing applications. Scripting has proved
to be a useful tool in the area of system management as
shown by the Perl scripting language.

Browsers employ scripting languages such as VBScript or
Javascript to do application and system related tasks such
as checking forms for errors before submission and
reacting to user input.

Scripting systems such as Sash from IBM [17] allows
users to quickly create and deploy applications (called
Weblications) to perform a variety of tasks from reading
from databases and LDAP registries to invoking Web
Services while providing a GUI based interface.

Recently, efforts such as WSRF:Lite and OGSI:Lite [18]
have used Perl as a hosting environment to rapidly
compose and deploy Grid services. Jython is a popular
scripting language and is used in various applications
such as GeoDISE [19]. Finally we have Matlab which is
used by majority of scientists for algorithm development,
data visualization, data analysis, and numerical
computation. GeoDISE provides Matlab and Jython

interfaces for deploying applications on the grid via
Globus [20].

Our approach uses Javascript to manage the
NaradaBrokering system and also deploy applications in a
Service-Oriented architecture. By binding URIs to the
scripting language we can access a variety of resources by
creating handlers to the specific URIs. This allows us to
combine disparate resources and compose them into a
distributed application.

5 Future Work

The HPSearch system presented above is our initial
approach towards building a scripting interface for
management of system, streams and services. However
with the increasing complexity of applications, the
management of metadata associated with the system
becomes increasingly complex and important [21]. We
plan to study how the system and the metadata
management would scale with the growing number of
components. Further, services are inherently non-reliable.
For systems to reliably deliver results, we plan to
investigate how to incorporate new and alternate services
into the application at runtime without affecting the
performance and disrupting the flow of information.
Again, this would require rigorous management of
services and system metadata.

Security [22] is paramount to the functioning of any
system. Although the shell and WSProxy do not currently
implement any security schemes, we plan to investigate
the security features provided by NaradaBrokering [23]
and WS-Security [24].

One disadvantage of using default transport
characteristics like TCP is that it is not optimal for every
kind of application. For example, UDP might be more
suitable for audio/video streams with reliability handled
at the application layer rather than the transport layer. We
are also currently working towards constructing the
StreamProxy (discussed in section 3.4) to negotiate ideal
transport for streams in Web Service architecture.

Finally we plan to add more handles to the HPSearch
management console to interface different aspects of
NaradaBrokering’s substrate such as replay of events,
security, discovery of brokers and services and heartbeat
and performance monitoring for brokers and services [25]
among others.

6 Conclusion

In this paper we presented HPSearch, a scripting interface
towards management of the NaradaBrokering system and
deployed services. We believe that the scripting interface

to NaradaBrokering would make it easier to setup and
manage the NaradaBrokering system at runtime. Further
we can quickly create data filtering applications and
rapidly deploy them using NaradaBrokering as the
messaging substrate.

Acknowledgement

This project is supported in part by the Complexity
Computational Environments: Data Assimilation SERVO
Grid project in the Advanced Information Systems
Technology area of NASA’s Earth Science Technology
Program.

References

[1] Geoffrey Fox, Shrideep Pallickara and Savas
Parastatidis, “Towards Flexible Messaging for SOAP
Based Services” Proceedings of the IEEE/ACM
Supercomputing Conference 2004, Pittsburgh, PA

[2] Shrideep Pallickara, Geoffrey Fox
“NaradaBrokering: A Distributed Middleware
Framework and Architecture for enabling Durable
Peer-To-Peer Grids” Proceedings of
ACM/IFIP/USENIX International Middleware
Conference Middleware - 2003, Rio Janerio, Brazil
June 2003

[3] NaradaBrokering, Project Page:
http://www.naradabrokering.org

[4] Web Services Reliable Messaging http://www-
106.ibm.com/developerworks/webservices/library/ws
rm/

[5] HPSearch, Design and Development via Scripting,
Project web-site: http://www.hpsearch.org

[6] Rhino: JavaScript for Java, Project Page:
http://www.mozilla.org/rhino

[7] John K. Ousterhout. Scripting: Higher Level
Programming for the 21st Century
http://home.pacbell.net/ouster/scripting.html

[8] Web Services Dynamic Discovery, Available from
http://xml.coverpages.org/WS-
Discovery20040217.pdf

[9] Universal Description, Discovery and Integration,
http://www.uddi.org

[10] The Apache AXIS project, http://ws.apache.org/axis

[11] WS – Transfer specification. Available from
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-transfer.pdf

[12] WS – Enumeration specification, Available from
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-enumeration.pdf

[13] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau,
J.-J., and Nielsen, H. (2003), SOAP Version 1.2 Part
1: Messaging Framework. W3C Recommendation 24
June 2003. Available from
http://www.w3c.org/TR/soap12-part1/

[14] WS – Secure Conversation Available from
ftp://www6.software.ibm.com/software/developer/lib
rary/ws-secureconversation.pdf

[15] Web Service Context Service Specification,
Available from
http://www.arjuna.com/library/specs/ws_caf_1-
0/WS-CTX.pdf

[16] Robert A. Granat, Regularized Deterministic
Annealing EM for Hidden Markov Models, Doctoral
Dissertation, University of California, Los Angeles,
June, 2004

[17] IBM Sash, Project Website:
http://sash.alphaworks.ibm.com

[18] OGSI:Lite and WSRF:Lite Project website:
http://www.sve.man.ac.uk/Research/AtoZ/ILCT

[19] GEODISE, Project page, http://www.geodise.org

[20] GLOBUS, http://www.globus.org

[21] Web Service Management, Available from
http://www.intel.com/technology/manage/downloads
/ws_management.pdf

[22] A Security Architecture for Computational Grids, I.
Foster, C. Kesselman, G. Tsudik, S. Tuecke. Proc. 5th
ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998

[23] Implementing a Prototype of the Security Framework
for Distributed Brokering Systems Yan Yan, et. al.
Proceedings of the 2003 International Conference on
Security and Management. Volume I pp 212-218

[24] Web Service Security Specification, Available from
http://www-
106.ibm.com/developerworks/webservices/library/ws
-secure/

[25] Implementing a Performance Forecasting System for
Metacomputing: The Network Weather Service Rich
Wolski, Neil Spring, Chris Peterson, in Proceedings
of SC97, November, 1997.

http://www.naradabrokering.org/
http://www-106.ibm.com/developerworks/webservices/library/wsrm/
http://www-106.ibm.com/developerworks/webservices/library/wsrm/
http://www-106.ibm.com/developerworks/webservices/library/wsrm/
http://www.hpsearch.org/
http://www.mozilla.org/rhino
http://home.pacbell.net/ouster/scripting.html
http://xml.coverpages.org/WS-Discovery20040217.pdf
http://xml.coverpages.org/WS-Discovery20040217.pdf
http://www.uddi.org/
http://ws.apache.org/axis
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://www.w3c.org/TR/soap12-part1/
ftp://www6.software.ibm.com/software/developer/library/ws-secureconversation.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-secureconversation.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://sash.alphaworks.ibm.com/
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://www.geodise.org/
http://www.globus.org/
http://www.intel.com/technology/manage/downloads/ws_management.pdf
http://www.intel.com/technology/manage/downloads/ws_management.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

