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Abstract— In MapReduce, map and reduce tasks are assigned 
to map and reduce slots hosted by worker nodes.  Usually the 
numbers of map and reduce slots are carefully chosen to gain 
optimal resource usage.  We found resource utilization is 
inefficient when there are not enough tasks to fill all task slots 
as the resources “reserved” for idle slots are just wasted.  We 
propose resource stealing which enables running tasks to steal 
the unutilized resources and return them when new tasks are 
assigned.  It exploits the opportunistic use of the otherwise 
wasted resources to improve overall resource utilization and 
reduce job execution time.  Besides, our practical use of 
Hadoop shows the current mechanism adopted to trigger 
speculative execution creates many unnecessary speculative 
tasks that are killed soon after creation as the original tasks 
complete earlier.  To alleviate the issue, we propose Benefit 
Aware Speculative Execution which predicts the benefit of 
launching new speculative tasks and greatly eliminates 
unnecessary runs of speculative tasks.  Finally, MapReduce is 
mainly optimized for homogeneous environments and its 
inefficiency in heterogeneous network environments has been 
observed in our experiments.  We investigate network 
heterogeneity aware scheduling of both map and reduce tasks.  
Overall, our goal is to enhance Hadoop to cope with significant 
system heterogeneity and improve resource utilization.   
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I.  INTRODUCTION 

To support data-intensive applications, several 
frameworks, such as Google File System (GFS) /MapReduce 
[1, 2], Hadoop [3] and Cosmos/Dryad [4] have been 
proposed.  Their native support of data locality aware 
scheduling dramatically reduces data movement.  They have 
been used in large scale to run both commercial applications 
[2, 5] and scientific applications [6, 7]. Hadoop is a popular 
open-source implementation of GFS and MapReduce.  
Hadoop Distributed File System (HDFS), which is modeled 
after GFS, is a distributed file system designed and 
optimized for write-once-read-many accesses of large files 
that are partitioned into equally-sized chunks.  MapReduce is 
designed for data parallel applications that can be expressed 
with primitive map and reduce operations.  Each map task 
applies user-implemented map operation to the data 
contained in one chunk.   

Modern servers are usually equipped with multi-core 
processors, so multiple computation tasks can run on a single 
node concurrently without incurring severe resource 

contention.  However, the concurrency needs to be carefully 
tuned to avoid resource underuse and overloading and 
achieve optimal utilization.  The optimal setting depends on 
not only hardware configuration but also application 
workload.  Rather than guess the optimal setting 
automatically, Hadoop gives users the freedom to control 
concurrency.  Each worker node has a number of map and 
reduce slots which can be configured by users on a per-node 
basis. Nodes with heterogeneous hardware can be configured 
individually.  At any time, each slot can run one task and 
each task can only be scheduled to one slot.  This mechanism 
cannot fully explore the processing capability of nodes when 
all slots are not used, because the resources corresponding to 
idle slots are just wasted.  To improve resource utilization, 
we propose resource stealing which dynamically expands 
and shrinks the usable resource set of each running task. 

Hadoop tackles fault-tolerance by speculatively 
launching duplicate tasks for the tasks deemed to be 
stragglers.  Whenever a task completes, all other duplicate 
tasks are immediately terminated.  Therefore job execution 
can continue in the face of task failure.  The progress rates of 
tasks are used to identify outliers in Hadoop, which has been 
found by us to be insufficient because some slowly 
progressing tasks that are close to completion are speculated 
unnecessarily.  We propose Benefit Aware Speculative 
Execution which only launches speculative tasks if they are 
expected to complete earlier than the speculated tasks.   

 Heterogeneity is inevitable for organizations that own 
various generations of IT resources purchased over different 
time frames.  Another source of heterogeneity is cloud 
bursting, which allows organizations to dynamically scale 
out their infrastructures by integrating their own dedicated 
resources and rented resources from third-party providers 
(e.g. Amazon, Rackspace).  Hadoop does not perform well in 
heterogeneous environments [5, 8].  In our study, we propose 
network heterogeneity aware scheduling algorithms to 
improve the performance of Hadoop in heterogeneous 
network environments.   

II. RELATED WORK 

Work stealing enables idle processors to steal 
computational work from other processors, which yields 
better load balancing and higher resource utilization [9].  
MapReduce adopts a different model and supports finer 
control of tasks running on each node.  We take a “reverse” 
approach in the sense that running tasks actively steal 



available resources (e.g. CPU cores, memory, network) 
reserved for prospective tasks.  Cycle stealing harnesses the 
available workstations by supplying them with work and 
receiving produced results [10].  Task splitting, which 
dynamically adjusts the granularity of map tasks based on 
real-time slot availability, yields better load balancing across 
nodes [11].  While our proposed resource stealing shares 
similar motivations, it is applied to the resources located on 
the same node and thus complementary to task splitting. 

Speculative execution has been applied to various areas.  
Branch predictors predict which branch a conditional jump 
will go to and speculatively execute the instructions before 
the evaluation of branch condition completes [12].  For a 
critical task which many other tasks depend on directly or 
transitively, task duplication, which redundantly executes the 
task at multiple places, has been proposed to reduce 
communication cost [13]. In MapReduce, speculative 
execution is used for both fault tolerance and performance 
improvement [2].  To improve MapReduce in heterogeneous 
environments, Longest Approximate Time to End (LATE) 
chooses the tasks that hurt the response time most to 
speculate and schedules them to fast nodes [5].  In addition, 
LATE limits the number of speculative tasks.  Our proposed 
Benefit Aware Speculative Execution goes one step further 
by reducing the number of useless speculative tasks.   

Prefetching and pre-shuffling are proposed in [14] to 
increase the data locality in Hadoop.  Intra-block prefetching 
prefetches data that will be processed subsequently by 
running map tasks; while intra-block prefetching prefetches 
whole data chunks to nodes where map tasks are expected to 
run. The increase of the overlap between computation and 
data IO yields shorter job execution time.  Pre-shuffling 
reduces the amount of shuffled data by scheduling map tasks 
close to future reduce tasks which intermediate data will be 
shuffled to.  Although heterogeneity is not mentioned in the 
paper, prefetching can potentially be used to “smooth out” 
the variation in network bandwidth. Network throughput 
information is explicitly used in our study to mitigate the 
influence of diverse network connections. For cloud 
environments where heterogeneity is frequently observed, 
Purlieus optimizes the allocation of virtual machines in a 
locality-aware manner to reduce the data transfer time [15].   

III. OUR APPROACHES 

A. MapReduce and Hadoop Background 

Hadoop adopts a master-worker architecture.  Job 
Tracker that runs on the master node manages all slave 
nodes and jobs.  A Task Tracker runs on each worker node 
and periodically reports node and task status to the job 
tracker.  When a task tracker reports that it has available map 
slots, the scheduler needs to decide which queued task will 
be scheduled there.  The default policy follows the principle 
of "move computation to data" and thus favors data locality. 

B. Resource Stealing 

As we introduced in section I, in Hadoop each worker 
node comprises a user-configurable number of map and 
reduce slots to which tasks are assigned.  You can imagine 

that a portion of underlying resources are reserved for each 
slot.  Whenever a task is scheduled and starts to run, the 
corresponding share of resources is used.  Resource usage is 
optimal when all slots are used.  By default, each node has 
two map slots and two reduce slots.  We found the default 
settings are too conservative and make Hadoop not able to 
fully utilize the resources in our clusters.  So they were 
changed to fall between 1x and 2x the number of cores, 
which is a best practice recommended by Hadoop 
developers.   

Even if map and reduce slots are configured optimally, 
the resource usage of the whole system is optimal only when 
all slots are used simultaneously.  Usually clusters are neither 
idle nor fully loaded.  According to the collected usage data 
of a thousand-node Google production cluster, CPU 
utilization is between 0% and 50% most of the time [16].  
Applying this fact to Hadoop, we can conclude that a 
significant portion of slots are left idle during off-peak hours.   

To utilize the idle resources to accelerate the execution of 
jobs, we propose resource stealing illustrated in Fig. 1. It 
shows how resource stealing can improve resource 
utilization compared to native Hadoop.  In Fig. 1(a), node N1 
has four task slots {A1, A2, A3, A4} among which two slots 
{A1, A2} are occupied with running tasks and the other two 
sit idle.  Vanilla Hadoop leaves idle slots unutilized unless 
there are new tasks to fill them.  Fig. 1(b) shows how 
resource stealing can alleviate the issue.  For each of tasks T1 
and T2, a new task is created dynamically so that the total 
number of tasks becomes equal to the number of slots.  
Those newly created tasks can utilize the resources 
“reserved” for idle slots A3 and A4.  Please note that slots A3 
and A4 are still idle from the perspective of the job tracker.  
Each original task and its newly created tasks process the 
input data concurrently.  In Fig. 1(c), two new tasks T3 and 
T4 are scheduled to node N1 by the job tracker.  To avoid 
severe resource contention, two running tasks are terminated, 
thereby handing back the stolen resources to T3 and T4.  

We call the portion of unutilized resources residual 
resources.  The next issue we investigate is how to allocate 
residual resources to running tasks in the system.  The 
allocation policies can range from simple to complex in their 
collection and use of system state information.  The policies 
we came up with are summarized in Table I.   

TABLE I.  RESOURCE ALLOCATION POLICIES 

Strategy Description 

Even Evenly allocate residual resource to tasks 

First-Come-Most The task that starts earliest is given residual resource.

Shortest-Time-Left-
Most 

The task that will complete soonest is given residual 
resource. 

Longest-Time-Left-
Most 

The task that will complete latest is given residual 
resource. 

Speculative-Task-
Most 

Speculative tasks are given residual resource. 

Even: This policy evenly allocates residual resources to 
running tasks.  It is inherently stable because of not relying 
on the collection or prediction of system state (and thus not 
impacted by the information inaccuracy).  



(a) Native Hadoop scheduling 

(b) Steal resources when there are idle slots 

(c) Hand back resources when new tasks are assigned 

Figure 1.  Native Hadoop vs. Resource stealing 

First-Come-Most (FCM): The tasks with earliest start 
time are given residual resources.  This policy tries to 
enforce the order in which jobs are submitted to the system 
(in a FIFO manner).   

Shortest-Time-Left-Most (STLM): The task with the 
earliest complete time is given residual resources.  The 
motivation is to make way for long tasks by letting tasks that 
are near completion complete as soon as possible.  In 
addition, it increases the processing throughput.   

Longest-Time-Left-Most (LTLM): The task that is 
expected to complete latest is given residual resources. 

Policies STLM and LTLM require the prediction of the 
remaining execution time of running tasks.  The approach 
used in [5] is adopted shown in (1) and (2).   

The policy Even is simple in the sense that it does not 
require system state information. The fact that this policy is 
extremely simple does not necessarily indicate it will 
perform significantly worse than other more sophisticated 
policies.  To evaluate the effectiveness of these policies in 
real clusters is part of our future work. 

 _ / _progress rate progress elapsed time  

 _ _ (1 ) / _time to end progress progress rate   

C. Benefit Aware Speculative Execution 

Speculative execution is adopted by Hadoop as a fault-
tolerance mechanism.  The job tracker keeps track of the 
progresses of all running tasks.  Whenever a task is found to 
be unusually slow compared with peer tasks, a speculative 
task is created and launched to process the same input data.  
The tasks whose progress rates are one standard deviation 
lower than the mean of all tasks are deemed as straggler 
tasks.  So Hadoop does not evaluate which of the speculated 
and speculative tasks will complete first.  Consider the 
scenario where there are two running tasks T1 and T2. T1 
progresses slow with rate 1 but its progress is 90%; T2 
progresses fast with rate 5 and its progress is 50%.  With 
default policy, Hadoop will launch a speculative task T1’ for 
T1.  We assume T1’ and T2 progress equally fast.  By doing 
simple calculation, we can find that T1 completes earlier than 
T1’ although T1 progresses much slower.  The reason is T1 is 
close to completion when it is speculated.   

We propose Benefit Aware Speculative Execution 
(BASE) to resolve the issue.  The remaining execution time 
of running tasks is calculated using (1) and (2).  The 
expected execution time of speculative tasks is estimated 
using historical information.  Given a regular task Ti, a 
speculative task Ti’ of Ti, and a node Nj, FTij denotes the set 
of completed tasks that belong to the same job as Ti and ran 
on Nj.  If FTij is non-empty, the harmonic mean of the 
execution time of tasks in FTij is used as the estimated 
execution time of Ti’.  If set FTij is empty, the harmonic 
mean of all tasks of the job is used.  Basically, we use the 
historical information of completed tasks to predict how long 
a speculative task will run on a specific node.  We chose to 
adopt harmonic mean because the average of task progress 
rates is desired.  Now we compare the expected completion 
time of Ti and Ti’, and Ti’ is executed only when it will 
completes earlier than Ti.  With moderately accurate 
prediction of execution time, we expect BASE to 
substantially reduce the number of useless speculative tasks.   

Part of our future work is to investigate the effectiveness 
of BASE by conducting intensive experiments on real 
clusters. 

D. Heterogeneity Aware Scheduling 

As we discussed before, clusters are not always 
homogeneous, and there are situations where heterogeneity 



is inevitable. In hierarchical MapReduce [17], multiple local 
clusters, which are administrated under different domains 
and may even be geographically scattered, are unified to 
form a single MapReduce cluster that offers more processing 
capability than any of the participating cluster. One natural 
consequence is the heterogeneity of network – inter-cluster 
bandwidth is usually dramatically different from intra-cluster 
bandwidth.   

We took another approach to build a unified Hadoop 
cluster. ViNe [18], which supports bi-directional 
communication between any pair of nodes, was used to 
create a virtual network environment across multiple 
physical clusters.  From the perspective of applications, 
ViNe is transparent and thus indistinguishable from physical 
networks in functionalities.  However, bandwidth and 
latency among nodes still depend upon physical network 
topology.  In our experiments, several FutureGrid clusters 
were connected using ViNe. Inter-cluster bandwidth was set 
to 1Mbps – 10Mbps while intra-cluster bandwidth was 
100Mbps – 1Gbps.  Apparently the network environment 
was drastically heterogeneous.  We deployed Hadoop on top 
of ViNe without modification and conducted a series of tests 
to evaluate performance.  The scenario where data locality is 
100% was chosen as the reference case.  Random scheduler 
was developed with the support of configurable randomness.  
Randomness 0.5 and 1 mean half of tasks and all tasks are 
randomly scheduled respectively.  We ran an IO intensive 
application linecount which counts the number of lines 
contained in input data.  The computation in linecount is 
trivial and data IO dominates the overall execution.  We 
varied the number of map slots per node and measured the 
slowdown of random scheduling.  Results are shown in Fig. 
2.  The performance degrades 2000 – 3000 times.  The 
reason is that some tasks greatly lagged behind other data-
local tasks as they lost data locality and needed to fetch input 
data from nodes located in another cluster.   

Although we chose application linecount in our tests, the 
experiment results are applied to not only linecount but also 
other IO intensive applications for which data IO dominates 
and the inefficiency in data fetching can substantially 
degrade the overall performance.   

 
To alleviate the performance degradation, we propose 

network heterogeneity aware scheduling algorithms.  Firstly, 
available network bandwidth between any pair of hosts is 
maintained and future network performance is estimated.  
Network Weather Service [19] fits this purpose which can 
collect real-time network bandwidth information without 

injecting an overwhelming number of probing packets into 
network and forecast future performance. Secondly, we 
define some useful symbols.  If task Ti is assigned to node Nj, 
DSi denotes the size of input data of task Ti; DTij denotes the 
data transfer time; PTij denotes the computation time; ETij 
denotes the execution time; ATj denotes the time when node 
Nj will become available; and CTij denotes the wall-clock 
completion time.  The available bandwidth between a pair of 
nodes Ni and Nj is denoted by BWi,j.  Their relationship is 
shown in (3), (4) and (5). 

 ,/ij i data src jDT DS BW   

 ij ij ijET PT DT   

 ij ij jCT ET AT   

1) Scheduling of Map Tasks  
If there are available slots and none of waiting tasks can 

achieve data locality, we get into the dilemma of scheduling 
non-local tasks immediately or delaying the scheduling with 
the hope to achieve better data locality in the subsequent 
scheduling.  Delay scheduling, which postpones the 
scheduling of non-local tasks by a small amount of time, 
improves data locality greatly in a system where most of jobs 
are small [20].  However, that approach has a couple of 
issues.  Firstly, for systems with different workload (e.g. 
many large jobs), delay scheduling may not work well.  
Secondly, the length of delay interval is specified by users, 
and the optimal setting is difficult to find for heterogeneous 
environments and may even change with the change of 
system state (e.g. peak hours vs. off-peak hours).   

We propose a more adaptive approach which reacts to the 
change of real-time system state.  Given task Ti and node Nj, 
the expected completion time of Ti on Nj can be calculated 
using (3), (4) and (5).  Assume there are n nodes totally. The 
node that yields the earliest expected completion time for a 
task is called the preferred node, formulated in (6).  The set 
of tasks whose preferred nodes are Nj is called the candidate 
task set of Nj and denoted by Cj.  If Cj contains multiple 
tasks, the scheduler needs to choose one of them.  To find the 
optimal solution is NP-hard [21].  We propose two heuristics 
to find approximately good solutions, inspired by previous 
research on the scheduling of bag-of-tasks [21, 22].  The first 
heuristic is to choose the task with minimum expected 
completion time among Cj, shown in (7).  This heuristic 
changes the availability status by the least amount and is 
expected to yield high throughput measured by the number 
of tasks processed per time unit on average.  However, long 
tasks may get starved and priority boosting can be used to 
avoid starvation.  The second heuristic is to choose the task 
with maximum expected completion time among Cj, shown 
in (8).  This heuristic schedules long running tasks early so 
that they will not slow down the overall job execution.  
Neither of the heuristics is expected to perform consistently 
better than the other.  We will evaluate their relative merits 
for different applications in the future.   

 
Figure 2.  Inefficiency in the face of heterogeneous network 



 K1 K2 K3 … Km 

N1 V11 V12 V13 … V1m 

N2 V21 … … … … 

N3 V31 … … … … 

… … … … … … 

Nn Vn1 … … … Vnm 

Figure 3.  Key ditribution of intermediate data on map side 

 arg min (1 )i j ijPN CT j n    

 Heuristic 1: arg min (1 )
ii C j jCT i C   

 Heuristic 2: arg max (1 )
ii C j jCT i C   

2) Shuffling and Scheduling of Reduce Tasks 
Each map tasks generates intermediate key/value pairs 

which are shuffled to reduce tasks.  The only constraint of 
the shuffling process is that key/value pairs with identical 
keys must be sent to and processed by the same reduce task.  
This is needed to guarantee the correct semantics of 
MapReduce model.  For each job, the distribution of 
intermediate key/value pairs on map side among all nodes is 
formulated as a matrix shown in Fig. 3.  Set {K1, K2, …, Kn} 
contains all unique keys generated by map tasks.  Set {N1, 
N2, …, Nm} contains all nodes in the system.  Among the data 
generated by map tasks on node Ni, Vij is the number of 
key/value pairs whose keys are Kj.  If no map task runs on 
node Ni or map tasks running on Ni do not generate 
key/value pairs with key being Kj, Vij is 0.  To find the 
optimal way to schedule shuffling, we need to (i) choose the 
nodes where reduce tasks will run; (ii) figure out how to 
distribute intermediate data to reduce tasks.  Ibrahim et al. 
proposed a heuristic algorithm to balance the amount of 
shuffled data and fair distribution of intermediate data on 
reduce nodes [23].  However, they implicitly assume the 
network connections between map tasks and reduce tasks are 
homogeneous and thus only consider the size of shuffled 
data.  Their algorithm may result in significant partitioning 
skew in heterogeneous environments.  

We propose a simple heuristic, which will be refined in 
the future, to determine where a reduce task should run.  
Given a reduce task that needs to fetch map output from a set 
of nodes where map tasks are located, we select the node 
which yields the minimum sum of data shuffling time and 
computation time.  In other words, we pick the node that 
yields the earliest completion time.  The execution of a 
reduce task cannot start until all assigned intermediate data 
are fetched.  So the slowest data fetching determines the 
overall shuffling time.  Because pairwise bandwidth 
information is maintained for all nodes and the amount of 
shuffled data is known after intermediate output is generated, 
we can calculate the data shuffling time for all candidate 
nodes where the reduce task under consideration can run 

potentially.  Computation time can be estimated based on 
historical data if possible.  If no historical data is available, 
sample run or user-provided hints are needed to provide 
approximately accurate estimation.  In heterogeneous 
environments, we expect this heuristic to substantially 
outperform native Hadoop scheduling which randomly 
schedules reduce tasks.   

3) Data Replication 
According to a study [24], over 50% of data accesses 

take place 1 minute after its creation.  During that short 
period, all replicas may not be fully created so that the data 
locality of subsequent MapReduce jobs will degrade.  By 
default, HDFS maintains three replicas among which one 
replica is stored on the local rack and the other two are stored 
on a remote rack.  This design reflects the philosophy “do 
not put all eggs in one basket” and thus has emphasis on data 
availability.  Beyond these constraints, HDFS does not apply 
any optimization.  One improvement we propose is that 
replicas should be quickly created by choosing the nodes 
with maximum interconnection throughput without violating 
the availability guarantee.  In an environment with 
drastically heterogeneous network, full Hadoop replication 
may take long time.  We propose that data availability can be 
violated temporarily by fully replicating data on nodes close 
to each other first and propagating it to a remote rack in 
background asynchronously.  This can increase the data 
locality of successively submitted MapReduce jobs.  
Whenever data copies on a remote rack are created, the 
excessive replicas are removed to release storage space.  
Also the order of replica propagation can be tuned to speed 
up the replication process.   

IV. CONCLUSION AND FUTURE WORK 

As some large-scale clusters exhibit inefficient resource 
utilization, it is possible to speed up task execution by using 
available resources more aggressively.  We propose resource 
stealing to improve resource utilization by aggressively 
harnessing the portion of unutilized resources.  Speculative 
execution in Hadoop was observed to be inefficient, which is 
caused by the excessive runs of useless speculative tasks.  
Our proposed Benefit Aware Speculative Execution manages 
speculative tasks in a benefit-aware manner and expected to 
improve the efficiency.  Finally, various scheduling 
algorithms, which take into consideration the real-time 
network performance, are proposed to alleviate the 
performance degradation caused by network heterogeneity.   

In the future, we will intensively evaluate the 
effectiveness of our approaches by running some non-trivial 
applications (e.g. sequence alignment algorithms Smith-
Waterman-Gotoh and Needleman–Wunsch).  In addition, we 
will further improve the proposed heterogeneity-aware 
scheduling heuristics of map and reduce tasks to make them 
more efficient and robust.  As for data replication in HDFS, 
we will study how to calculate the best propagation path to 
minimize the replication time and thus improve the data 
locality of MapReduce jobs.  Both storage and computation 
will be considered simultaneously to maximize the potential 
performance improvement.   
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