
Improving MapReduce Performance in Heterogeneous Network Environments and
Resource Utilization

Zhenhua Guo, Geoffrey Fox
School of Informatics and Computing

Indiana University Bloomington
Bloomington, IN USA

{zhguo, gcf}@cs.indiana.edu

Abstract— In MapReduce, map and reduce tasks are assigned
to map and reduce slots hosted by worker nodes. Usually the
numbers of map and reduce slots are carefully chosen to gain
optimal resource usage. We found resource utilization is
inefficient when there are not enough tasks to fill all task slots
as the resources “reserved” for idle slots are just wasted. We
propose resource stealing which enables running tasks to steal
the unutilized resources and return them when new tasks are
assigned. It exploits the opportunistic use of the otherwise
wasted resources to improve overall resource utilization and
reduce job execution time. Besides, our practical use of
Hadoop shows the current mechanism adopted to trigger
speculative execution creates many unnecessary speculative
tasks that are killed soon after creation as the original tasks
complete earlier. To alleviate the issue, we propose Benefit
Aware Speculative Execution which predicts the benefit of
launching new speculative tasks and greatly eliminates
unnecessary runs of speculative tasks. Finally, MapReduce is
mainly optimized for homogeneous environments and its
inefficiency in heterogeneous network environments has been
observed in our experiments. We investigate network
heterogeneity aware scheduling of both map and reduce tasks.
Overall, our goal is to enhance Hadoop to cope with significant
system heterogeneity and improve resource utilization.

Keywords- heterogeneity, MapReduce, Hadoop, resource
utilization, scheduling

I. INTRODUCTION

To support data-intensive applications, several
frameworks, such as Google File System (GFS) /MapReduce
[1, 2], Hadoop [3] and Cosmos/Dryad [4] have been
proposed. Their native support of data locality aware
scheduling dramatically reduces data movement. They have
been used in large scale to run both commercial applications
[2, 5] and scientific applications [6, 7]. Hadoop is a popular
open-source implementation of GFS and MapReduce.
Hadoop Distributed File System (HDFS), which is modeled
after GFS, is a distributed file system designed and
optimized for write-once-read-many accesses of large files
that are partitioned into equally-sized chunks. MapReduce is
designed for data parallel applications that can be expressed
with primitive map and reduce operations. Each map task
applies user-implemented map operation to the data
contained in one chunk.

Modern servers are usually equipped with multi-core
processors, so multiple computation tasks can run on a single
node concurrently without incurring severe resource

contention. However, the concurrency needs to be carefully
tuned to avoid resource underuse and overloading and
achieve optimal utilization. The optimal setting depends on
not only hardware configuration but also application
workload. Rather than guess the optimal setting
automatically, Hadoop gives users the freedom to control
concurrency. Each worker node has a number of map and
reduce slots which can be configured by users on a per-node
basis. Nodes with heterogeneous hardware can be configured
individually. At any time, each slot can run one task and
each task can only be scheduled to one slot. This mechanism
cannot fully explore the processing capability of nodes when
all slots are not used, because the resources corresponding to
idle slots are just wasted. To improve resource utilization,
we propose resource stealing which dynamically expands
and shrinks the usable resource set of each running task.

Hadoop tackles fault-tolerance by speculatively
launching duplicate tasks for the tasks deemed to be
stragglers. Whenever a task completes, all other duplicate
tasks are immediately terminated. Therefore job execution
can continue in the face of task failure. The progress rates of
tasks are used to identify outliers in Hadoop, which has been
found by us to be insufficient because some slowly
progressing tasks that are close to completion are speculated
unnecessarily. We propose Benefit Aware Speculative
Execution which only launches speculative tasks if they are
expected to complete earlier than the speculated tasks.

 Heterogeneity is inevitable for organizations that own
various generations of IT resources purchased over different
time frames. Another source of heterogeneity is cloud
bursting, which allows organizations to dynamically scale
out their infrastructures by integrating their own dedicated
resources and rented resources from third-party providers
(e.g. Amazon, Rackspace). Hadoop does not perform well in
heterogeneous environments [5, 8]. In our study, we propose
network heterogeneity aware scheduling algorithms to
improve the performance of Hadoop in heterogeneous
network environments.

II. RELATED WORK

Work stealing enables idle processors to steal
computational work from other processors, which yields
better load balancing and higher resource utilization [9].
MapReduce adopts a different model and supports finer
control of tasks running on each node. We take a “reverse”
approach in the sense that running tasks actively steal

available resources (e.g. CPU cores, memory, network)
reserved for prospective tasks. Cycle stealing harnesses the
available workstations by supplying them with work and
receiving produced results [10]. Task splitting, which
dynamically adjusts the granularity of map tasks based on
real-time slot availability, yields better load balancing across
nodes [11]. While our proposed resource stealing shares
similar motivations, it is applied to the resources located on
the same node and thus complementary to task splitting.

Speculative execution has been applied to various areas.
Branch predictors predict which branch a conditional jump
will go to and speculatively execute the instructions before
the evaluation of branch condition completes [12]. For a
critical task which many other tasks depend on directly or
transitively, task duplication, which redundantly executes the
task at multiple places, has been proposed to reduce
communication cost [13]. In MapReduce, speculative
execution is used for both fault tolerance and performance
improvement [2]. To improve MapReduce in heterogeneous
environments, Longest Approximate Time to End (LATE)
chooses the tasks that hurt the response time most to
speculate and schedules them to fast nodes [5]. In addition,
LATE limits the number of speculative tasks. Our proposed
Benefit Aware Speculative Execution goes one step further
by reducing the number of useless speculative tasks.

Prefetching and pre-shuffling are proposed in [14] to
increase the data locality in Hadoop. Intra-block prefetching
prefetches data that will be processed subsequently by
running map tasks; while intra-block prefetching prefetches
whole data chunks to nodes where map tasks are expected to
run. The increase of the overlap between computation and
data IO yields shorter job execution time. Pre-shuffling
reduces the amount of shuffled data by scheduling map tasks
close to future reduce tasks which intermediate data will be
shuffled to. Although heterogeneity is not mentioned in the
paper, prefetching can potentially be used to “smooth out”
the variation in network bandwidth. Network throughput
information is explicitly used in our study to mitigate the
influence of diverse network connections. For cloud
environments where heterogeneity is frequently observed,
Purlieus optimizes the allocation of virtual machines in a
locality-aware manner to reduce the data transfer time [15].

III. OUR APPROACHES

A. MapReduce and Hadoop Background

Hadoop adopts a master-worker architecture. Job
Tracker that runs on the master node manages all slave
nodes and jobs. A Task Tracker runs on each worker node
and periodically reports node and task status to the job
tracker. When a task tracker reports that it has available map
slots, the scheduler needs to decide which queued task will
be scheduled there. The default policy follows the principle
of "move computation to data" and thus favors data locality.

B. Resource Stealing

As we introduced in section I, in Hadoop each worker
node comprises a user-configurable number of map and
reduce slots to which tasks are assigned. You can imagine

that a portion of underlying resources are reserved for each
slot. Whenever a task is scheduled and starts to run, the
corresponding share of resources is used. Resource usage is
optimal when all slots are used. By default, each node has
two map slots and two reduce slots. We found the default
settings are too conservative and make Hadoop not able to
fully utilize the resources in our clusters. So they were
changed to fall between 1x and 2x the number of cores,
which is a best practice recommended by Hadoop
developers.

Even if map and reduce slots are configured optimally,
the resource usage of the whole system is optimal only when
all slots are used simultaneously. Usually clusters are neither
idle nor fully loaded. According to the collected usage data
of a thousand-node Google production cluster, CPU
utilization is between 0% and 50% most of the time [16].
Applying this fact to Hadoop, we can conclude that a
significant portion of slots are left idle during off-peak hours.

To utilize the idle resources to accelerate the execution of
jobs, we propose resource stealing illustrated in Fig. 1. It
shows how resource stealing can improve resource
utilization compared to native Hadoop. In Fig. 1(a), node N1
has four task slots {A1, A2, A3, A4} among which two slots
{A1, A2} are occupied with running tasks and the other two
sit idle. Vanilla Hadoop leaves idle slots unutilized unless
there are new tasks to fill them. Fig. 1(b) shows how
resource stealing can alleviate the issue. For each of tasks T1
and T2, a new task is created dynamically so that the total
number of tasks becomes equal to the number of slots.
Those newly created tasks can utilize the resources
“reserved” for idle slots A3 and A4. Please note that slots A3
and A4 are still idle from the perspective of the job tracker.
Each original task and its newly created tasks process the
input data concurrently. In Fig. 1(c), two new tasks T3 and
T4 are scheduled to node N1 by the job tracker. To avoid
severe resource contention, two running tasks are terminated,
thereby handing back the stolen resources to T3 and T4.

We call the portion of unutilized resources residual
resources. The next issue we investigate is how to allocate
residual resources to running tasks in the system. The
allocation policies can range from simple to complex in their
collection and use of system state information. The policies
we came up with are summarized in Table I.

TABLE I. RESOURCE ALLOCATION POLICIES

Strategy Description

Even Evenly allocate residual resource to tasks

First-Come-Most The task that starts earliest is given residual resource.

Shortest-Time-Left-
Most

The task that will complete soonest is given residual
resource.

Longest-Time-Left-
Most

The task that will complete latest is given residual
resource.

Speculative-Task-
Most

Speculative tasks are given residual resource.

Even: This policy evenly allocates residual resources to
running tasks. It is inherently stable because of not relying
on the collection or prediction of system state (and thus not
impacted by the information inaccuracy).

(a) Native Hadoop scheduling

(b) Steal resources when there are idle slots

(c) Hand back resources when new tasks are assigned

Figure 1. Native Hadoop vs. Resource stealing

First-Come-Most (FCM): The tasks with earliest start
time are given residual resources. This policy tries to
enforce the order in which jobs are submitted to the system
(in a FIFO manner).

Shortest-Time-Left-Most (STLM): The task with the
earliest complete time is given residual resources. The
motivation is to make way for long tasks by letting tasks that
are near completion complete as soon as possible. In
addition, it increases the processing throughput.

Longest-Time-Left-Most (LTLM): The task that is
expected to complete latest is given residual resources.

Policies STLM and LTLM require the prediction of the
remaining execution time of running tasks. The approach
used in [5] is adopted shown in (1) and (2).

The policy Even is simple in the sense that it does not
require system state information. The fact that this policy is
extremely simple does not necessarily indicate it will
perform significantly worse than other more sophisticated
policies. To evaluate the effectiveness of these policies in
real clusters is part of our future work.

 _ / _progress rate progress elapsed time

 _ _ (1) / _time to end progress progress rate

C. Benefit Aware Speculative Execution

Speculative execution is adopted by Hadoop as a fault-
tolerance mechanism. The job tracker keeps track of the
progresses of all running tasks. Whenever a task is found to
be unusually slow compared with peer tasks, a speculative
task is created and launched to process the same input data.
The tasks whose progress rates are one standard deviation
lower than the mean of all tasks are deemed as straggler
tasks. So Hadoop does not evaluate which of the speculated
and speculative tasks will complete first. Consider the
scenario where there are two running tasks T1 and T2. T1
progresses slow with rate 1 but its progress is 90%; T2
progresses fast with rate 5 and its progress is 50%. With
default policy, Hadoop will launch a speculative task T1’ for
T1. We assume T1’ and T2 progress equally fast. By doing
simple calculation, we can find that T1 completes earlier than
T1’ although T1 progresses much slower. The reason is T1 is
close to completion when it is speculated.

We propose Benefit Aware Speculative Execution
(BASE) to resolve the issue. The remaining execution time
of running tasks is calculated using (1) and (2). The
expected execution time of speculative tasks is estimated
using historical information. Given a regular task Ti, a
speculative task Ti’ of Ti, and a node Nj, FTij denotes the set
of completed tasks that belong to the same job as Ti and ran
on Nj. If FTij is non-empty, the harmonic mean of the
execution time of tasks in FTij is used as the estimated
execution time of Ti’. If set FTij is empty, the harmonic
mean of all tasks of the job is used. Basically, we use the
historical information of completed tasks to predict how long
a speculative task will run on a specific node. We chose to
adopt harmonic mean because the average of task progress
rates is desired. Now we compare the expected completion
time of Ti and Ti’, and Ti’ is executed only when it will
completes earlier than Ti. With moderately accurate
prediction of execution time, we expect BASE to
substantially reduce the number of useless speculative tasks.

Part of our future work is to investigate the effectiveness
of BASE by conducting intensive experiments on real
clusters.

D. Heterogeneity Aware Scheduling

As we discussed before, clusters are not always
homogeneous, and there are situations where heterogeneity

is inevitable. In hierarchical MapReduce [17], multiple local
clusters, which are administrated under different domains
and may even be geographically scattered, are unified to
form a single MapReduce cluster that offers more processing
capability than any of the participating cluster. One natural
consequence is the heterogeneity of network – inter-cluster
bandwidth is usually dramatically different from intra-cluster
bandwidth.

We took another approach to build a unified Hadoop
cluster. ViNe [18], which supports bi-directional
communication between any pair of nodes, was used to
create a virtual network environment across multiple
physical clusters. From the perspective of applications,
ViNe is transparent and thus indistinguishable from physical
networks in functionalities. However, bandwidth and
latency among nodes still depend upon physical network
topology. In our experiments, several FutureGrid clusters
were connected using ViNe. Inter-cluster bandwidth was set
to 1Mbps – 10Mbps while intra-cluster bandwidth was
100Mbps – 1Gbps. Apparently the network environment
was drastically heterogeneous. We deployed Hadoop on top
of ViNe without modification and conducted a series of tests
to evaluate performance. The scenario where data locality is
100% was chosen as the reference case. Random scheduler
was developed with the support of configurable randomness.
Randomness 0.5 and 1 mean half of tasks and all tasks are
randomly scheduled respectively. We ran an IO intensive
application linecount which counts the number of lines
contained in input data. The computation in linecount is
trivial and data IO dominates the overall execution. We
varied the number of map slots per node and measured the
slowdown of random scheduling. Results are shown in Fig.
2. The performance degrades 2000 – 3000 times. The
reason is that some tasks greatly lagged behind other data-
local tasks as they lost data locality and needed to fetch input
data from nodes located in another cluster.

Although we chose application linecount in our tests, the
experiment results are applied to not only linecount but also
other IO intensive applications for which data IO dominates
and the inefficiency in data fetching can substantially
degrade the overall performance.

To alleviate the performance degradation, we propose

network heterogeneity aware scheduling algorithms. Firstly,
available network bandwidth between any pair of hosts is
maintained and future network performance is estimated.
Network Weather Service [19] fits this purpose which can
collect real-time network bandwidth information without

injecting an overwhelming number of probing packets into
network and forecast future performance. Secondly, we
define some useful symbols. If task Ti is assigned to node Nj,
DSi denotes the size of input data of task Ti; DTij denotes the
data transfer time; PTij denotes the computation time; ETij
denotes the execution time; ATj denotes the time when node
Nj will become available; and CTij denotes the wall-clock
completion time. The available bandwidth between a pair of
nodes Ni and Nj is denoted by BWi,j. Their relationship is
shown in (3), (4) and (5).

 ,/ij i data src jDT DS BW

 ij ij ijET PT DT

 ij ij jCT ET AT

1) Scheduling of Map Tasks
If there are available slots and none of waiting tasks can

achieve data locality, we get into the dilemma of scheduling
non-local tasks immediately or delaying the scheduling with
the hope to achieve better data locality in the subsequent
scheduling. Delay scheduling, which postpones the
scheduling of non-local tasks by a small amount of time,
improves data locality greatly in a system where most of jobs
are small [20]. However, that approach has a couple of
issues. Firstly, for systems with different workload (e.g.
many large jobs), delay scheduling may not work well.
Secondly, the length of delay interval is specified by users,
and the optimal setting is difficult to find for heterogeneous
environments and may even change with the change of
system state (e.g. peak hours vs. off-peak hours).

We propose a more adaptive approach which reacts to the
change of real-time system state. Given task Ti and node Nj,
the expected completion time of Ti on Nj can be calculated
using (3), (4) and (5). Assume there are n nodes totally. The
node that yields the earliest expected completion time for a
task is called the preferred node, formulated in (6). The set
of tasks whose preferred nodes are Nj is called the candidate
task set of Nj and denoted by Cj. If Cj contains multiple
tasks, the scheduler needs to choose one of them. To find the
optimal solution is NP-hard [21]. We propose two heuristics
to find approximately good solutions, inspired by previous
research on the scheduling of bag-of-tasks [21, 22]. The first
heuristic is to choose the task with minimum expected
completion time among Cj, shown in (7). This heuristic
changes the availability status by the least amount and is
expected to yield high throughput measured by the number
of tasks processed per time unit on average. However, long
tasks may get starved and priority boosting can be used to
avoid starvation. The second heuristic is to choose the task
with maximum expected completion time among Cj, shown
in (8). This heuristic schedules long running tasks early so
that they will not slow down the overall job execution.
Neither of the heuristics is expected to perform consistently
better than the other. We will evaluate their relative merits
for different applications in the future.

Figure 2. Inefficiency in the face of heterogeneous network

 K1 K2 K3 … Km

N1 V11 V12 V13 … V1m

N2 V21 … … … …

N3 V31 … … … …

… … … … … …

Nn Vn1 … … … Vnm

Figure 3. Key ditribution of intermediate data on map side

 arg min (1)i j ijPN CT j n

 Heuristic 1: arg min (1)
ii C j jCT i C

 Heuristic 2: arg max (1)
ii C j jCT i C

2) Shuffling and Scheduling of Reduce Tasks
Each map tasks generates intermediate key/value pairs

which are shuffled to reduce tasks. The only constraint of
the shuffling process is that key/value pairs with identical
keys must be sent to and processed by the same reduce task.
This is needed to guarantee the correct semantics of
MapReduce model. For each job, the distribution of
intermediate key/value pairs on map side among all nodes is
formulated as a matrix shown in Fig. 3. Set {K1, K2, …, Kn}
contains all unique keys generated by map tasks. Set {N1,
N2, …, Nm} contains all nodes in the system. Among the data
generated by map tasks on node Ni, Vij is the number of
key/value pairs whose keys are Kj. If no map task runs on
node Ni or map tasks running on Ni do not generate
key/value pairs with key being Kj, Vij is 0. To find the
optimal way to schedule shuffling, we need to (i) choose the
nodes where reduce tasks will run; (ii) figure out how to
distribute intermediate data to reduce tasks. Ibrahim et al.
proposed a heuristic algorithm to balance the amount of
shuffled data and fair distribution of intermediate data on
reduce nodes [23]. However, they implicitly assume the
network connections between map tasks and reduce tasks are
homogeneous and thus only consider the size of shuffled
data. Their algorithm may result in significant partitioning
skew in heterogeneous environments.

We propose a simple heuristic, which will be refined in
the future, to determine where a reduce task should run.
Given a reduce task that needs to fetch map output from a set
of nodes where map tasks are located, we select the node
which yields the minimum sum of data shuffling time and
computation time. In other words, we pick the node that
yields the earliest completion time. The execution of a
reduce task cannot start until all assigned intermediate data
are fetched. So the slowest data fetching determines the
overall shuffling time. Because pairwise bandwidth
information is maintained for all nodes and the amount of
shuffled data is known after intermediate output is generated,
we can calculate the data shuffling time for all candidate
nodes where the reduce task under consideration can run

potentially. Computation time can be estimated based on
historical data if possible. If no historical data is available,
sample run or user-provided hints are needed to provide
approximately accurate estimation. In heterogeneous
environments, we expect this heuristic to substantially
outperform native Hadoop scheduling which randomly
schedules reduce tasks.

3) Data Replication
According to a study [24], over 50% of data accesses

take place 1 minute after its creation. During that short
period, all replicas may not be fully created so that the data
locality of subsequent MapReduce jobs will degrade. By
default, HDFS maintains three replicas among which one
replica is stored on the local rack and the other two are stored
on a remote rack. This design reflects the philosophy “do
not put all eggs in one basket” and thus has emphasis on data
availability. Beyond these constraints, HDFS does not apply
any optimization. One improvement we propose is that
replicas should be quickly created by choosing the nodes
with maximum interconnection throughput without violating
the availability guarantee. In an environment with
drastically heterogeneous network, full Hadoop replication
may take long time. We propose that data availability can be
violated temporarily by fully replicating data on nodes close
to each other first and propagating it to a remote rack in
background asynchronously. This can increase the data
locality of successively submitted MapReduce jobs.
Whenever data copies on a remote rack are created, the
excessive replicas are removed to release storage space.
Also the order of replica propagation can be tuned to speed
up the replication process.

IV. CONCLUSION AND FUTURE WORK

As some large-scale clusters exhibit inefficient resource
utilization, it is possible to speed up task execution by using
available resources more aggressively. We propose resource
stealing to improve resource utilization by aggressively
harnessing the portion of unutilized resources. Speculative
execution in Hadoop was observed to be inefficient, which is
caused by the excessive runs of useless speculative tasks.
Our proposed Benefit Aware Speculative Execution manages
speculative tasks in a benefit-aware manner and expected to
improve the efficiency. Finally, various scheduling
algorithms, which take into consideration the real-time
network performance, are proposed to alleviate the
performance degradation caused by network heterogeneity.

In the future, we will intensively evaluate the
effectiveness of our approaches by running some non-trivial
applications (e.g. sequence alignment algorithms Smith-
Waterman-Gotoh and Needleman–Wunsch). In addition, we
will further improve the proposed heterogeneity-aware
scheduling heuristics of map and reduce tasks to make them
more efficient and robust. As for data replication in HDFS,
we will study how to calculate the best propagation path to
minimize the replication time and thus improve the data
locality of MapReduce jobs. Both storage and computation
will be considered simultaneously to maximize the potential
performance improvement.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812.

REFERENCES
[1] S. Ghemawat, H. Gobioff, and S. T. Leung, "The google file system,"

SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29-43, Oct. 2003. DOI:
http://dx.doi.org/10.1145/1165389.945450

[2] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing
on large clusters," in Symposium on Operating System Design and
Implementation (OSDI), 2004, pp. 137-150

[3] “Apache Hadoop,” [Online]. Available: http://hadoop.apache.org

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
in Proc. Eur. Conf. Comput. Syst. (EuroSys), 2007, pp. 59–72

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
"Improving MapReduce performance in heterogeneous
environments," in Proceedings of the 8th USENIX conference on
Operating systems design and implementation, ser. OSDI'08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 29-42.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1855744

[6] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga,
and D. Gannon, "Cloud technologies for bioinformatics applications,"
in Proceedings of the 2nd Workshop on Many-Task Computing on
Grids and Supercomputers, ser. MTAGS '09. New York, NY, USA:
ACM, 2009. [Online]. Available:
http://dx.doi.org/10.1145/1646468.1646474

[7] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, "Map-reduce for machine learning on multicore,"
Advances in neural information processing systems, vol. 19, p. 281,
2007.

[8] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin, "Improving MapReduce performance through data
placement in heterogeneous hadoop clusters," in Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, Apr. 2010, pp. 1-9. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2010.5470880

[9] R. D. Blumofe and C. E. Leiserson, "Scheduling multithreaded
computations by work stealing," in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science. Washington,
DC, USA: IEEE Computer Society, 1994, pp. 356-368.

[10] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg,
"On optimal strategies for Cycle-Stealing in networks of
workstations," IEEE Trans. Comput., vol. 46, pp. 545-557, May 1997

[11] Z. Guo, M. Pierce, G. Fox, and M. Zhou, "Automatic task re-
organization in MapReduce," in Proceedings of the 2011 IEEE
International Conference on Cluster Computing, ser. CLUSTER '11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 335-343.
[Online]. Available: http://dx.doi.org/10.1109/CLUSTER.2011.44

[12] L. Gwennap. New algorithm improves branch prediction.
Microprocessor Reports, March 27 1995.

[13] I. Ahmad and Y. K. Kwok, "A new approach to scheduling parallel
programs using task duplication," in Proceedings of the 1994
International Conference on Parallel Processing - Volume 02, ser.
ICPP '94. Washington, DC, USA: IEEE Computer Society, 1994,
pp. 47-51.

[14] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng, "HPMR:
Prefetching and pre-shuffling in shared MapReduce computation
environment," in Cluster Computing and Workshops, 2009.
CLUSTER '09. IEEE International Conference on, Sep. 2009, pp. 1-8.
[Online]. Available:
http://dx.doi.org/10.1109/CLUSTR.2009.5289171

[15] B. Palanisamy, A. Singh, L. Liu, and B. Jain, "Purlieus: locality-
aware resource allocation for MapReduce in a cloud," in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC '11. New York, NY,
USA: ACM, 2011. [Online]. Available:
http://dx.doi.org/10.1145/2063384.2063462

[16] L. A. Barroso and U. Hölzle, "The case for Energy-Proportional
computing," Computer, vol. 40, pp. 33-37, Dec. 2007

[17] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, and W. W. Li, "A
hierarchical framework for cross-domain MapReduce execution," in
Proceedings of the second international workshop on Emerging
computational methods for the life sciences, ser. ECMLS '11. New
York, NY, USA: ACM, 2011, pp. 15-22.

[18] M. Tsugawa and J. A. B. Fortes, "A virtual network (ViNe)
architecture for grid computing," in Proceedings of the 20th
international conference on Parallel and distributed processing, ser.
IPDPS'06. Washington, DC, USA: IEEE Computer Society, 2006, p.
148.

[19] R. Wolski, N. T. Spring, and J. Hayes, "The network weather service:
a distributed resource performance forecasting service for
metacomputing," Future Gener. Comput. Syst., vol. 15, no. 5-6, pp.
757-768, Oct. 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0167-739X(99)00025-4

[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, "Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling," in Proc. of EuroSys.
ACM, 2010, pp. 265-278.

[21] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
"Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems," J. Parallel Distrib. Comput., vol.
59, pp. 107-131, Nov. 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=339727

[22] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A.
I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R.
F. Freund, "A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems," J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810-837,
Jun. 2001. [Online]. Available:
http://dx.doi.org/10.1006/jpdc.2000.1714

[23] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, "LEEN:
Locality/Fairness-aware key partitioning for MapReduce in the
cloud," in Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, ser.
CloudCom '10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 17-24. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2010.25

[24] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, "DiskReduce: RAID
for data-intensive scalable computing," in Proceedings of the 4th
Annual Workshop on Petascale Data Storage, ser. PDSW '09. New
York, NY, USA: ACM, 2009, pp. 6-10. [Online]. Available:
http://dx.doi.org/10.1145/1713072.1713075

