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This report investigates and compares four representative distributed NoSQL database systems, 

including HBase, Cassandra, MongoDB, and Riak, in terms of five dimensions: data model, data 

distribution mechanism, data replication and consistency management, data indexing support, and 

distributed data processing support. 

1. Data Model 

Data model defines the logical organization of data that is presented to the user or client 

application by a NoSQL database system. 

1.1 HBase 

HBase supports the BigTable data model [1] that was originally proposed by Google. Figure 1 

illustrates this data model. Data are stored in tables; each table contains multiple rows, and a 

fixed number of column families. For each row, there can be a various number of qualifiers 

(columns) within each column family, and at the intersections of rows and qualifiers are table 

cells. Cell contents are uninterpreted byte arrays. Cell values are versioned using timestamps, 

and a table can be configured to maintain a certain number of versions. Rows are sorted by row 

keys, which are also implemented as byte arrays. Within each column family, columns are sorted 

by column names. Cell values under a column are further sorted by timestamps. 

 
Figure 1. An example of the BigTable data model. 

Compared with the data model defined by “relations” in traditional relational databases, HBase 

tables and columns are analogous to tables and columns in relational databases. However, there 

are four significant differences: 

(1) Relational databases do not have the concept of “column families”. In HBase, data from 

different columns under the same column family are stored together (as one file on HDFS). In 

comparison, data storage in relational databases is either row-oriented, where data in the same 

row are consecutively stored on physical disks, or column-oriented, where data in the same 

column are consecutively stored. 



(2) In relational databases, each table must have a fixed number of columns (or “fields”). I.e. 

every row in a given table has the same set of columns. In HBase, each row in a table can 

have a different number of columns within the same column family.  

(3) In HBase, cell values can be versioned with timestamps. The relational data model does not 

have the concept of versions. 

(4) In general, NoSQL databases such as HBase do not enforce relationships between tables in 

the way relational databases do through mechanisms such as foreign keys. User applications 

have to deal with dependencies among tables through their application logics or mechanisms 

such as “Coprocessors” supported by HBase [5]. 

1.2 Cassandra 

The data model of Cassandra [2][14] is overall similar to HBase, but with several major 

differences: 

(1) In Cassandra, the concept of a table is equal to a “column family”; i.e. each table contains 

only one column family. Different column families are totally separate logical structures 

containing different set of row keys. Therefore, compared with the relational data model, 

Cassandra column families are analogous to tables, and columns under column families are 

analogous to columns in relational tables. Consider the example in Figure 1. In Cassandra, the 

“Student Table” in Figure 1 will be implemented either as one “Student” column family 

containing all the columns in Figure 1, or as two separate column families, “Student-

BasicInfo” and “Student-ClassGrades”. 

(2) Beyond column families, Cassandra supports an extended concept of “super column family”, 

which can contain “super columns”. A super column is comprised of a (super) column name 

and an ordered map of sub-columns. The limitation of super columns is that all sub-columns 

of a super column must be deserialized in order to access a single sub-column value. 

(3) The order of row keys in a column family depends on the data partition strategy used for a 

Cassandra cluster. By default the Random Partitioner is used, which means row keys are not 

sorted within a column family and there is no way to do range scans based on row keys 

without using external facilitating mechanisms such as an extra user-defined indexing column 

family. Row keys are sorted when the Order Preserving Partitioner is used, but this 

configuration is not recommended [3][4]. 

(4) Cassandra does not support explicit maintenance of multiple ‘versions’ of the column (cell) 

values. Column values do have associated timestamps but they are internally used for 

resolving conflicts caused by eventual consistency. Column values with obsolete timestamps 

are eventually deleted as a result of conflict resolution. 

1.3 MongoDB 

MongoDB is a distributed document database that provides high performance, high availability, 

and automatic scaling. It uses the concept of “collections” and “documents” to model data [6]. A 

collection is a grouping of MongoDB documents which normally have similar schemas. A 

collection is analogous to a table in relational databases and a document is analogous to a table 

record. Documents are modeled as a data structure following the JSON format, which is 

composed of field and value pairs. Each document is uniquely identified by a “_id” field as the 

primary key. The values of fields may include embedded documents, arrays, and arrays of 

documents [7]. Figure 2 shows an example MongoDB document. MongoDB can support access 

to a sorted list of documents by performing a query with sorting on a document field []. 



 
Figure 2. An example of the MongoDB document data model [7]. 

Relationships between documents can be modelled in two ways: references and embedded 

documents [8]. 

1.4 Riak 

Riak is a distributed database designed for key-value storage. Its data model follows a simple 

“key/value” scheme, where the key is a unique identifier of a data object, and the value is a piece 

of data that can be of various types, such as text and binary [10]. Each data object can also be 

tagged with additional metadata, which can be used to build secondary indexes to support query 

of data objects [11]. A concept of “bucket” is used as a namespace for grouping key/value pairs. 

Figure 3 illustrates an example of the Riak data model. 

 
Figure 3. An example of the key/value data model in Riak. 

2. Data Distribution Mechanism 

The data distribution mechanism determines how data operations are distributed among different 

nodes in a NoSQL database cluster. Most systems use two major mechanisms: key-range based 

distribution and hash based distribution. Key-range based distribution can easily support range 

scans of sorted data, but may face the problem of unbalanced access load to different value ranges. 

Hash based distribution has the advantage of balanced access load across nodes, but does not 

support range scans very well. 

2.1 HBase 

HBase uses a key-range based data distribution mechanism. Each table horizontally split into 

regions, and regions are assigned to different region servers by the HBase master. Since rows are 

sorted by row keys in the HBase data model, each region covers a consecutive range of row keys. 

Figure 4 illustrates the architecture of HBase. HBase dynamically splits a region into two when 

its size gets over a limit, or according to a user-specified RegionSplitPolicy. Users can also force 

region splits to handle “hot” regions [11]. Since table data are stored in HDFS, region splits do 

not involve much data movement and can be finished very quickly. Region splits happens in the 

background and does not affect client applications. 



2.2 Cassandra 

Depending on the configuration about data partitioner, a Cassandra cluster may apply either key-

range based distribution or hash based distribution. 

When the Random Partitioner is used (which is the default configuration), nodes in the cluster 

form a Distributed Hash Table (DHT). Cassandra partitions data across the cluster using 

consistent hashing. The output range of a hash function is treated as a fixed circular space or 

“ring" (i.e. the largest hash value wraps around to the smallest hash value). Each node in the 

system is assigned a random value within this space which represents its position on the ring. 

After position assignment, each node becomes responsible for the region in the ring between it 

and its predecessor node on the ring [14]. 

To handle a data operation request, the row key of the data operation is first hashed using the 

MD5 hashing algorithm, and then the operation is sent to the node that is responsible for the 

corresponding hash value to process. The MD5 hashing step ensures a balanced distribution of 

data and workload even in cases where the application data has an uneven distribution across the 

row keys, because the hash values of the possibly preponderant sections of row keys will still 

demonstrate an even distribution [4]. 

When the Order Preserving Partitioner is used, each node becomes responsible for the storage 

and operations of a consecutive range of row keys. In this case, when the application data has an 

uneven distribution across the row key space, the nodes will have an unbalanced workload 

distribution [4]. 

Load skew may be further caused by two other factors. First, the random position assignment of 

each node on the ring leads to non-uniform data and load distribution. Second, the basic data 

distribution algorithm is oblivious to the heterogeneity in the performance of nodes. To address 

these issues, Cassandra analyzes load information on the ring and move lightly loaded nodes on 

the ring to alleviate heavily loaded nodes [14]. Besides, every time a new node is added, 

Cassandra will assign a range of keys to that node such that it takes responsibility for half the 

keys stored on the node that currently stores the most keys. In a stable cluster, data load can also 

be rebalanced by careful administrative operations, such as manual assignment of key ranges or 

node take-down and bring-up [4]. 

2.3 MongoDB 

MongoDB also supports both key-range based distribution and hash based distribution through 

configurations. The working logic is similar to Cassandra. MongoDB organizes nodes in units of 

shards and partitions the key space of data collections into chunks. Chunks are then distributed 

across the shards. Dynamic load balancing among shards are achieved through chunk splitting 

and chunk migration [13]. 

2.4 Riak 

Riak also uses a DHT to support hash based distribution. When the client performs key/value 

operations, the bucket and key combination is hashed. The resulting hash maps onto a 160-bit 

integer space. Riak divides the integer space into equally-sized partitions. Each partition is 

managed by a process called a virtual node (or “vnode”). Physical machines evenly divide 

responsibility for vnodes. Figure 4 [10] illustrates an example partition distribution of the hash 

value space among 4 nodes. 



 
Figure 4. Hash based data distribution in Riak [10]. 

3. Data Replication and Consistency Management 

Almost all NoSQL database systems rely on replication to ensure high data availability in 

distributed deployments. However, different systems use different strategies to manage the 

consistency of multiple replicas of the same piece of data. This section only covers data-object-

level consistency, i.e. consistency among replicas of single data objects. Most NoSQL database 

systems do not address transaction-level consistency, which may involve a series of updates to 

multiple related data objects. Supporting transaction-level consistency will require additional 

synchronization extensions [13]. 

3.1 HBase 

Since HBase uses HDFS for data storage, it inherits the replication and consistency 

management from HDFS. Specifically, the replication factor and replica location method is 

decided by HDFS. Since HDFS enforces complete consistency – a write operations does not 

return until all replicas have been updated – HBase also ensures complete consistency for its data 

update operations. Upon receiving a data update operation, the HBase region server first records 

this operation in a write-ahead log (WAL), and then put it in its memstore (an in-memory data 

structure). When the memstore reaches its size limit, it is written to an HFile [15]. Both the WAL 

file and the store file are HDFS files. Therefore, complete consistency is guaranteed for all data 

updates. HDFS and HBase do not originally support deployment with data center awareness. 

3.2 Cassandra 

Each data item in Cassandra is replicated at N hosts, where N is the replication factor. The node 

responsible for the key of the data item is called a coordinator node. In addition to locally storing 

each key within its range, the coordinator replicates these keys at the N-1 nodes in the ring. 

Cassandra provides various replication policies such as “Rack Unaware", “Rack Aware" 

(within a datacenter) and “Datacenter Aware". Replicas are chosen based on the replication 

policy chosen by the application. If the “Rack Unaware" replication strategy is chosen, then the 

non-coordinator replicas are chosen by picking N-1 successors of the coordinator on the ring. 

Cassandra allows eventual consistency among data replicas to achieve high availability, partition 

tolerance and short response time for data operations. Cassandra extends the concept of eventual 

consistency by offering tunable consistency. For any given read or write operation, the client 

application decides how consistent the requested data should be. The consistency level can be 



specified using values such as “ANY”, “ONE”, “QUORUM”, “ALL”, etc. Some values are 

specially designed for multiple data center clusters, such as “LOCAL_QUORUM” and 

“EACH_QUORUM” [16]. To understand the meaning of consistency levels, take “QUORUM” 

for write as an example. This level requires that a write operation will be sent to all replica nodes, 

and will only return after it is written to the commit log and memory table on a quorum of replica 

nodes. 

Cassandra provides a number of built-in repair features to ensure that data remains consistent 

across replicas, including Read Repair, Anti-Entropy Node Repair, and Hinted Handoff [16]. 

3.3 MongoDB 

MongoDB manages data replication in the units of shards. Each shard is a replica set, which can 

contain one primary member, multiple secondary members, and one arbiter. The primary is the 

only member in the replica set that receives write operations. MongoDB applies write operations 

on the primary and then records the operations on the primary’s oplog. Secondary members 

replicate this log and apply the operations to their data sets. All members of the replica set can 

accept read operations. However, by default, an application directs its read operations to the 

primary member. If the current primary becomes unavailable, an election determines the new 

primary. Replica sets with an even number of members may have an arbiter to add a vote in 

elections of for primary [17]. Replica sets can be made data center-aware through proper 

configurations [18]. 

Data synchronization between primary and secondaries are completed through eventual 

consistency [19]. If Read Preference is set to non-primary, read operations directed to 

secondaries may get stale data [20]. MongoDB also supports tunable consistency for each write 

operation through the “Write Concern” parameter [] 

3.4 Riak 

Riak allows the user to set a replication number for each bucket, which defaults to 3. When a 

data object's key is mapped onto a given partition of the circular hash value space, Riak 

automatically replicates the data onto the next two partitions (Figure 5) [10]. Riak supports multi 

data center replication through the concept of “primary cluster” and “secondary clusters” [22]. 

 
Figure 5. Data replication in Riak [10]. 

Similar to Cassandra, Riak also supports tunable consistency for each data operation [21]. It 

relies on mechanisms such as Vector Clock, Hinted Handoff, and Read Repair to resolve 

conflicts and ensure consistency [10]. 



4. Data Indexing Support 

There are two major categories of indexing involved in distributed NoSQL database systems: 

primary indexing and secondary indexing. In terms of distributed index storage, there are two 

ways of index partitioning: partition by original data or partition by index key. “Partition by 

original data” means that each node in the cluster only maintains the secondary index for the 

portion of the original data that is locally hosted by this node. In this case, when a query 

involving an indexed field is evaluated, the query must be sent to every node in the cluster. Each 

node will use the local portion of secondary index to do a “partial evaluation” of the query, and 

return a subset of result. The final result is generated by combining results from all the nodes. 

Figure 6 illustrates partition by original data. “Partition by index key” means that a global index 

is built for the whole data set on all the nodes, and then distributed among the nodes by making 

partitions with the key of the index. To evaluate a query about an indexed field value, only the 

node maintaining the index for that queried field value is contacted, and it processes all related 

index entries to get the query result. Figure 7 illustrates partition by index key. 

  
Figure 6. Partition by original data. Figure 7. Partition by index key. 

Partition by original data is good for handling complicated queries involving multiple fields and 

constraints, because each node can partially evaluate the query by only accessing local data. 

Although the query has to be broadcast to all nodes, the total amount of communication is much 

smaller than the size of the relevant part of the indexes for each field. Partition by index key 

works better when queries are simple, because the major part of evaluation is the processing and 

transmission of the related index entries, and only the exact related node(s) need to be contacted. 

4.1 HBase 

Primary indexing 

HBase builds a primary index on the row keys, which is conceptually similar to a distributed 

multi-level B+-tree index. HBase maintains two global catalog tables: ROOT and META. ROOT 

always has only one region, and its location is stored in ZooKeeper. ROOT keeps track of the 

regions of the META table, and META keeps a list of all regions in the system, as well as which 

region servers are hosting them [24]. On the region server, data are read from and written to 

HFiles on HDFS, and the HFile format contains information about a multi-level B+-tree like data 



structure [23]. The primary index is a clustered index because the data records are stored directly 

in the index entries. 

Secondary Indexing 

HBase does not originally support secondary indexes for cell values. IndexedHBase extends 

HBase with the capability of defining and building customizable index structures using HBase 

tables. By using the index configuration file and user-defined pluggable indexer implementation, 

it is possible to define various index structures, including B+-tree-like single field index, 

multidimensional index, text index [44], geospatial index [45], or even multi-key index as 

supported by MongoDB [30]. IndexedHBase has been successfully applied in building 

multidimensional text indexes for supporting social data analysis applications [25].  

Consistency between data and index 

Since IndexedHBase directly uses HBase tables to store indexes, index updates are not atomically 

associated with data updates. Eventual consistency between index updates and data updates is 

completed at the level of milliseconds. 

Secondary index partition scheme 

Since cell values of the data table are used as row keys for the index tables, the index tables are 

partitioned by index keys. A hybrid solution of partition by original data and partition by index 

key can be achieved by first partition the original data table into multiple “sub-tables”, and then 

build an index table for each “sub-table”. For example, in our experience in supporting social data 

analysis applications [25], original data are partitioned by month into different tables, and then 

separately indexed with index tables. 

4.2 Cassandra 

Primary indexing 

The DHT architecture of Cassandra basically builds a distributed primary key hash index for the 

row keys of column families. This primary index is a clustered index since data records are 

contained in the index entries. 

Secondary Indexing 

Beyond primary key index, Cassandra supports creation of secondary indexes on any column 

values [26]. The internal secondary index implementation depends whether the data type of the 

column values is non-text data and text data. 

For non-text column values, Cassandra can create hash indexes which are internally maintained 

as hidden index column families [27]. This index column family stores a mapping from index 

values to a sorted list of matching row keys. Since the index is a hash index, query results are not 

sorted by the order of the indexed values. Besides, range queries on indexed columns cannot be 

completed by using the index. Although an “equal” match in the index returns an ordered list 

relevant row keys. 

For text column values, the commercial version of Cassandar, DataStax, supports secondary 

indexes on text data through integration with Solr [28]. Moreover, the indexes are stored as 



Lucene index files [29], which means various query types, including equal queries, wildcard 

queries, range queries, etc. can be supported. 

Consistency between data and index 

Data update + index update is an atomic operation, so immediate consistency is ensured between 

the original data and index data.  

Secondary index partition scheme 

Each node maintains the secondary indexes for its own local part of original data. Therefore, 

secondary indexes are partitioned by original data. 

Limitations 

Cassandra secondary indexes currently have several limitations. First, they can only index values 

from single columns; multidimensional indexes as used in [25] are not supported. Second, as 

mentioned above, indexes for non-text columns cannot be used to evaluate range queries. Finally, 

even if a query specifies constraints on multiple indexed columns, only one index will be used to 

quickly locate the related row keys. Range constraints can be specified on additional columns in 

the query, but are checked against the original data instead of using indexes [26]. 

4.3 MongoDB 

Primary indexing 

MongoDB automatically forces the creation of a primary key index on the _id field of the 

documents. Index entries are sorted by _id, but note that this primary key index is not a clustered 

index in Database terms. I.e. the index entries only contains pointers to actual documents in the 

MongoDB data files. Documents are not physically stored in the order of _id on disks. 

Secondary Indexing 

Beyond the primary index, MongoDB supports various secondary indexes for field values of 

documents, including single field index, multidimensional index, multikey index, geospatial 

index, text index, and hashed index [30]. Single field, multidimensional, and multikey indexes are 

organized using B-tree structures. The geospatial index supports indexing using quad trees [47] 

on 2-dimension geospatial data. The official documentation does not provide details about how 

the text indexes are implemented, but it is known that basic features such as stopping, stemming, 

and scoring are supported [48]. Text index in MongoDB is still in beta version. The hashed index 

can be used to support both hash based data distribution and equality queries of field values in 

documents, but obviously cannot be used for range queries. 

Consistency between data and index 

Data is indexed on the fly in the same atomic operation. Therefore, immediate consistency is 

ensured between the original data and index data. 

Secondary index partition scheme 

Each shard maintains the secondary index for its local partition of the original data. Therefore, 

secondary indexes are partitioned by original data. 



4.4 Riak 

Primary indexing 

As explained in section 2.4, Riak builds a primary key hash index for its key/value pairs 

through DHT. This index is a clustered index because data objects are directly stored together 

with the index keys. 

Secondary Indexing 

Riak supports secondary indexes on the tagged attributes of the key/value pairs and inverted 

indexes for text data contained in the value. For secondary indexes on tagged attributes, exact 

match and range queries are supported. However, current Riak implementation forces the 

limitation that one query can only use secondary index search on one indexed attribute (field). 

Queries involving multiple indexed attributes have to be broken down as multiple queries; then 

the results are merged to get the final result [31]. No details are given about the internal structures 

used for secondary indexes in the official Riak documentation. According to the brief mention in 

[46], it seems that a flat list of key/entries is used.  

For inverted indexes on values of text type, text data contained in the values of key/value pairs 

are parsed and indexed according to a pre-defined index schema. Similar to DataStax, Riak also 

tries to integrate with the interface of Solr, and stores index using the Lucene file format, so as to 

support various types of queries on text data, such as wildcard queries and range queries [32]. 

Beyond the basic inverted index structure, Riak supports a special feature called “inline fields” 

[33]. If a field is specified as an “inline” field, its value will be attached to the document IDs in 

the posting lists of every indexed field of the inverted index. Inline fields are useful for evaluating 

queries involving multiple fields of text data, but it is not flexible enough in the sense that the 

value of every inline field will appear in the posting list of every indexed field, which may cause 

unnecessary indexing and storage overhead. 

Consistency between data and index 

Data update + index update is an atomic operation, so immediate consistency is ensured between 

the original data and index data. 

Secondary index partition scheme 

For secondary indexes on tagged attributes, each node maintains the indexes for its local part of 

original data. Therefore, the indexes are partitioned by original data. However, the text index is 

partitioned by terms (keys in inverted index). In Riak, text index schemas are configured at the 

level of buckets. I.e. all the key/value pairs in a configured bucket will be parsed and indexed 

according to the same given schema. A global inverted index is created and maintained for all 

key/value pairs added to that bucket, and then partitioned by terms in the inverted index, and 

distributed among all the nodes in the ring. 

5. Distributed Data Processing Support 

5.1 HBase and Cassandra 

HBase and Cassandra both support parallel data processing by integration with Hadoop 

MapReduce [34][35][36], which is designed for fault tolerant parallel processing of large batches 



of data. It implements the full semantics of the MapReduce computing model and applies a 

comprehensive initialization process for setting up the runtime environment on the worker nodes. 

Hadoop MapReduce uses disks on worker nodes to save intermediate data and does grouping and 

sorting before passing them to reducers. A job can be configured to use zero or multiple reducers. 

5.2 MongoDB 

MongoDB provides two frameworks to apply parallel processing to large document collections: 

aggregation pipeline [37] and MapReduce [38]. 

The aggregation pipeline completes aggregate computation on a collection of documents by 

applying a pipeline of data operators, such as match, project, group, etc. By using proper 

operators such as match and skip at the beginning of the pipeline, the framework is able to take 

advantage of existing indexes to limit the scope of processing to only a related subset of 

documents in the collection and thus achieve better performance. Currently MongoDB 

implementation enforces several important limits on the usage of aggregation pipelines, including 

input data types, final result size, and memory usage by operators [39]. This implies that the 

pipeline operators operate completely in memory and does not use external disk storage for 

computations such as sorting and grouping. 

The MapReduce framework is designed to support aggregate computations that go beyond the 

limits of the aggregation pipeline, as well as extended data processing that cannot be finished by 

the aggregation pipeline. MapReduce functions are written in JavaScript, and executed in 

MongoDB daemon processes. Compared with Hadoop MapReduce, MongoDB MapReduce is 

different in several aspects. First, reduce is only applied to the map outputs where a key has 

multiple associated values. Keys associated with single values are not processed by reduce. 

Second, besides map and reduce, an extra finalize phase can be applied to further process the 

outputs from reduce. Third, a special “incremental MapReduce” mechanism is provided to 

support dynamically growing collections of documents. This mechanism allows reduce to be used 

for merging the results from the latest MapReduce job and previous MapReduce jobs. Fourth, the 

framework supports an option for choosing the way intermediate data are stored and transmitted. 

The default mode stores intermediated data on local disks of the nodes, but the client can specify 

to only use memory for intermediated data storage, in which case a limit is enforced on the total 

size of key/value pairs from the map output. Finally, functions written in JavaScript may limit the 

capabilities of map and reduce. For example, it is hard or even impossible to access an outside 

data resource such as a database or distributed file system [40][41] to facilitate the computation 

carried out in map and reduce. 

5.3 Riak 

Riak provides a lightweight MapReduce framework for users to query the data by defining 

MapReduce functions in JavaScript or Erlang []. Furthermore, Riak supports MapReduce over the 

search results by using secondary indexes or text indexes. Riak MapReduce is different from 

Hadoop MapReduce in several ways. There is always only one reducer running for each 

MapReduce job. Intermediate data are transmitted directly from mappers to the reducer without 

being sorted or grouped. The reducer relies on its memory stack to store the whole list of 

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is 

not suitable for processing large datasets. 



6. Summary 

Table 1 provides a summary of this report. 

Table 1. Comparison of representative distributed NoSQL databases 

 HBase Cassandra MongoDB Riak 

Data model Table -> column 

family -> column 

-> version -> cell 

value 

Table (column 

family) -> column -> 

cell value 

Collection -> 

document 

Bucket -> 

key/value with 

tagged metadata 

Architecture HMaster + 

region servers. 

HMaster handles 

failure recovery 

and region splits. 

Decentralized DHT. 

Replication, failure 

recovery and node 

join/departure are 

handled in a 

decentralized 

manner. 

Config servers + 

data operation 

routers + shards. 

Within a shard: one 

primary + multiple 

secondaries + 

arbiters. Replication 

and failure recovery 

handled at the shard 

level. 

Decentralized 

DHT. 

Replication, 

failure recovery 

and node 

join/departure 

are handled in a 

decentralized 

manner. 

Data distribution 

mechanism 

Key-range based 

distribution. 

Key-range based 

distribution and hash 

based distribution. 

Key-range based 

distribution and hash 

based distribution. 

Hash based 

distribution. 

Data replication 

and consistency 

model 

Decided by 

HDFS. No “data 

center aware” 

replica 

placement. 

Complete 

consistency. 

Configurable 

replication policy 

with data center 

awareness. Tunable 

eventual consistency 

for each data 

operation. 

Replication level 

configured through 

secondaries. 

Eventual consistency 

between primary and 

secondaries. Tunable 

eventual consistency 

for each operation. 

Replication 

level configured 

at the bucket 

level. Tunable 

eventual 

consistency for 

each data 

operation. 

Data indexing 

support 

No original 

secondary 

indexing support. 

Customizable 

indexing with 

IndexedHBase. 

Eventual 

consistency 

between data and 

index. 

Secondary hash 

indexes implemented 

as hidden column 

families for non-text 

data, and as Lucene 

files for text data. 

Nodes maintain 

secondary indexes 

locally. Atomic data 

+ index updates. 

B-tree for single-

field, 

multidimensional, 

and multikey 

indexes. Quad tree 

for geospatial index. 

Text index, and hash 

index also supported. 

Indexes are locally 

maintained by shard 

members. 

Secondary 

indexes for 

tagged metadata 

maintained 

locally, and text 

index for text 

data maintained 

globally. 

Atomic data + 

index updates. 

Distributed data 

processing 

support 

Hadoop 

MapReduce. 

Hadoop MapReduce. Aggregation pipeline 

for aggregation 

operations and Map-

Reduce-Finalize for 

more complicated 

operations. 

Intermediate data 

storage can be 

configured to use 

disks or not. 

A lightweight 

MapReduce 

framework for 

query purposes. 

In-memory 

intermediate 

data storage + 

single reducer. 
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