
Investigation and Comparison of Distributed NoSQL

Database Systems
Xiaoming Gao

Indiana University

This report investigates and compares four representative distributed NoSQL database systems,

including HBase, Cassandra, MongoDB, and Riak, in terms of five dimensions: data model, data

distribution mechanism, data replication and consistency management, data indexing support, and

distributed data processing support.

1. Data Model

Data model defines the logical organization of data that is presented to the user or client

application by a NoSQL database system.

1.1 HBase

HBase supports the BigTable data model [1] that was originally proposed by Google. Figure 1

illustrates this data model. Data are stored in tables; each table contains multiple rows, and a

fixed number of column families. For each row, there can be a various number of qualifiers

(columns) within each column family, and at the intersections of rows and qualifiers are table

cells. Cell contents are uninterpreted byte arrays. Cell values are versioned using timestamps,

and a table can be configured to maintain a certain number of versions. Rows are sorted by row

keys, which are also implemented as byte arrays. Within each column family, columns are sorted

by column names. Cell values under a column are further sorted by timestamps.

Figure 1. An example of the BigTable data model.

Compared with the data model defined by “relations” in traditional relational databases, HBase

tables and columns are analogous to tables and columns in relational databases. However, there

are four significant differences:

(1) Relational databases do not have the concept of “column families”. In HBase, data from

different columns under the same column family are stored together (as one file on HDFS). In

comparison, data storage in relational databases is either row-oriented, where data in the same

row are consecutively stored on physical disks, or column-oriented, where data in the same

column are consecutively stored.

(2) In relational databases, each table must have a fixed number of columns (or “fields”). I.e.

every row in a given table has the same set of columns. In HBase, each row in a table can

have a different number of columns within the same column family.

(3) In HBase, cell values can be versioned with timestamps. The relational data model does not

have the concept of versions.

(4) In general, NoSQL databases such as HBase do not enforce relationships between tables in

the way relational databases do through mechanisms such as foreign keys. User applications

have to deal with dependencies among tables through their application logics or mechanisms

such as “Coprocessors” supported by HBase [5].

1.2 Cassandra

The data model of Cassandra [2][14] is overall similar to HBase, but with several major

differences:

(1) In Cassandra, the concept of a table is equal to a “column family”; i.e. each table contains

only one column family. Different column families are totally separate logical structures

containing different set of row keys. Therefore, compared with the relational data model,

Cassandra column families are analogous to tables, and columns under column families are

analogous to columns in relational tables. Consider the example in Figure 1. In Cassandra, the

“Student Table” in Figure 1 will be implemented either as one “Student” column family

containing all the columns in Figure 1, or as two separate column families, “Student-

BasicInfo” and “Student-ClassGrades”.

(2) Beyond column families, Cassandra supports an extended concept of “super column family”,

which can contain “super columns”. A super column is comprised of a (super) column name

and an ordered map of sub-columns. The limitation of super columns is that all sub-columns

of a super column must be deserialized in order to access a single sub-column value.

(3) The order of row keys in a column family depends on the data partition strategy used for a

Cassandra cluster. By default the Random Partitioner is used, which means row keys are not

sorted within a column family and there is no way to do range scans based on row keys

without using external facilitating mechanisms such as an extra user-defined indexing column

family. Row keys are sorted when the Order Preserving Partitioner is used, but this

configuration is not recommended [3][4].

(4) Cassandra does not support explicit maintenance of multiple ‘versions’ of the column (cell)

values. Column values do have associated timestamps but they are internally used for

resolving conflicts caused by eventual consistency. Column values with obsolete timestamps

are eventually deleted as a result of conflict resolution.

1.3 MongoDB

MongoDB is a distributed document database that provides high performance, high availability,

and automatic scaling. It uses the concept of “collections” and “documents” to model data [6]. A

collection is a grouping of MongoDB documents which normally have similar schemas. A

collection is analogous to a table in relational databases and a document is analogous to a table

record. Documents are modeled as a data structure following the JSON format, which is

composed of field and value pairs. Each document is uniquely identified by a “_id” field as the

primary key. The values of fields may include embedded documents, arrays, and arrays of

documents [7]. Figure 2 shows an example MongoDB document. MongoDB can support access

to a sorted list of documents by performing a query with sorting on a document field [].

Figure 2. An example of the MongoDB document data model [7].

Relationships between documents can be modelled in two ways: references and embedded

documents [8].

1.4 Riak

Riak is a distributed database designed for key-value storage. Its data model follows a simple

“key/value” scheme, where the key is a unique identifier of a data object, and the value is a piece

of data that can be of various types, such as text and binary [10]. Each data object can also be

tagged with additional metadata, which can be used to build secondary indexes to support query

of data objects [11]. A concept of “bucket” is used as a namespace for grouping key/value pairs.

Figure 3 illustrates an example of the Riak data model.

Figure 3. An example of the key/value data model in Riak.

2. Data Distribution Mechanism

The data distribution mechanism determines how data operations are distributed among different

nodes in a NoSQL database cluster. Most systems use two major mechanisms: key-range based

distribution and hash based distribution. Key-range based distribution can easily support range

scans of sorted data, but may face the problem of unbalanced access load to different value ranges.

Hash based distribution has the advantage of balanced access load across nodes, but does not

support range scans very well.

2.1 HBase

HBase uses a key-range based data distribution mechanism. Each table horizontally split into

regions, and regions are assigned to different region servers by the HBase master. Since rows are

sorted by row keys in the HBase data model, each region covers a consecutive range of row keys.

Figure 4 illustrates the architecture of HBase. HBase dynamically splits a region into two when

its size gets over a limit, or according to a user-specified RegionSplitPolicy. Users can also force

region splits to handle “hot” regions [11]. Since table data are stored in HDFS, region splits do

not involve much data movement and can be finished very quickly. Region splits happens in the

background and does not affect client applications.

2.2 Cassandra

Depending on the configuration about data partitioner, a Cassandra cluster may apply either key-

range based distribution or hash based distribution.

When the Random Partitioner is used (which is the default configuration), nodes in the cluster

form a Distributed Hash Table (DHT). Cassandra partitions data across the cluster using

consistent hashing. The output range of a hash function is treated as a fixed circular space or

“ring" (i.e. the largest hash value wraps around to the smallest hash value). Each node in the

system is assigned a random value within this space which represents its position on the ring.

After position assignment, each node becomes responsible for the region in the ring between it

and its predecessor node on the ring [14].

To handle a data operation request, the row key of the data operation is first hashed using the

MD5 hashing algorithm, and then the operation is sent to the node that is responsible for the

corresponding hash value to process. The MD5 hashing step ensures a balanced distribution of

data and workload even in cases where the application data has an uneven distribution across the

row keys, because the hash values of the possibly preponderant sections of row keys will still

demonstrate an even distribution [4].

When the Order Preserving Partitioner is used, each node becomes responsible for the storage

and operations of a consecutive range of row keys. In this case, when the application data has an

uneven distribution across the row key space, the nodes will have an unbalanced workload

distribution [4].

Load skew may be further caused by two other factors. First, the random position assignment of

each node on the ring leads to non-uniform data and load distribution. Second, the basic data

distribution algorithm is oblivious to the heterogeneity in the performance of nodes. To address

these issues, Cassandra analyzes load information on the ring and move lightly loaded nodes on

the ring to alleviate heavily loaded nodes [14]. Besides, every time a new node is added,

Cassandra will assign a range of keys to that node such that it takes responsibility for half the

keys stored on the node that currently stores the most keys. In a stable cluster, data load can also

be rebalanced by careful administrative operations, such as manual assignment of key ranges or

node take-down and bring-up [4].

2.3 MongoDB

MongoDB also supports both key-range based distribution and hash based distribution through

configurations. The working logic is similar to Cassandra. MongoDB organizes nodes in units of

shards and partitions the key space of data collections into chunks. Chunks are then distributed

across the shards. Dynamic load balancing among shards are achieved through chunk splitting

and chunk migration [13].

2.4 Riak

Riak also uses a DHT to support hash based distribution. When the client performs key/value

operations, the bucket and key combination is hashed. The resulting hash maps onto a 160-bit

integer space. Riak divides the integer space into equally-sized partitions. Each partition is

managed by a process called a virtual node (or “vnode”). Physical machines evenly divide

responsibility for vnodes. Figure 4 [10] illustrates an example partition distribution of the hash

value space among 4 nodes.

Figure 4. Hash based data distribution in Riak [10].

3. Data Replication and Consistency Management

Almost all NoSQL database systems rely on replication to ensure high data availability in

distributed deployments. However, different systems use different strategies to manage the

consistency of multiple replicas of the same piece of data. This section only covers data-object-

level consistency, i.e. consistency among replicas of single data objects. Most NoSQL database

systems do not address transaction-level consistency, which may involve a series of updates to

multiple related data objects. Supporting transaction-level consistency will require additional

synchronization extensions [13].

3.1 HBase

Since HBase uses HDFS for data storage, it inherits the replication and consistency

management from HDFS. Specifically, the replication factor and replica location method is

decided by HDFS. Since HDFS enforces complete consistency – a write operations does not

return until all replicas have been updated – HBase also ensures complete consistency for its data

update operations. Upon receiving a data update operation, the HBase region server first records

this operation in a write-ahead log (WAL), and then put it in its memstore (an in-memory data

structure). When the memstore reaches its size limit, it is written to an HFile [15]. Both the WAL

file and the store file are HDFS files. Therefore, complete consistency is guaranteed for all data

updates. HDFS and HBase do not originally support deployment with data center awareness.

3.2 Cassandra

Each data item in Cassandra is replicated at N hosts, where N is the replication factor. The node

responsible for the key of the data item is called a coordinator node. In addition to locally storing

each key within its range, the coordinator replicates these keys at the N-1 nodes in the ring.

Cassandra provides various replication policies such as “Rack Unaware", “Rack Aware"

(within a datacenter) and “Datacenter Aware". Replicas are chosen based on the replication

policy chosen by the application. If the “Rack Unaware" replication strategy is chosen, then the

non-coordinator replicas are chosen by picking N-1 successors of the coordinator on the ring.

Cassandra allows eventual consistency among data replicas to achieve high availability, partition

tolerance and short response time for data operations. Cassandra extends the concept of eventual

consistency by offering tunable consistency. For any given read or write operation, the client

application decides how consistent the requested data should be. The consistency level can be

specified using values such as “ANY”, “ONE”, “QUORUM”, “ALL”, etc. Some values are

specially designed for multiple data center clusters, such as “LOCAL_QUORUM” and

“EACH_QUORUM” [16]. To understand the meaning of consistency levels, take “QUORUM”

for write as an example. This level requires that a write operation will be sent to all replica nodes,

and will only return after it is written to the commit log and memory table on a quorum of replica

nodes.

Cassandra provides a number of built-in repair features to ensure that data remains consistent

across replicas, including Read Repair, Anti-Entropy Node Repair, and Hinted Handoff [16].

3.3 MongoDB

MongoDB manages data replication in the units of shards. Each shard is a replica set, which can

contain one primary member, multiple secondary members, and one arbiter. The primary is the

only member in the replica set that receives write operations. MongoDB applies write operations

on the primary and then records the operations on the primary’s oplog. Secondary members

replicate this log and apply the operations to their data sets. All members of the replica set can

accept read operations. However, by default, an application directs its read operations to the

primary member. If the current primary becomes unavailable, an election determines the new

primary. Replica sets with an even number of members may have an arbiter to add a vote in

elections of for primary [17]. Replica sets can be made data center-aware through proper

configurations [18].

Data synchronization between primary and secondaries are completed through eventual

consistency [19]. If Read Preference is set to non-primary, read operations directed to

secondaries may get stale data [20]. MongoDB also supports tunable consistency for each write

operation through the “Write Concern” parameter []

3.4 Riak

Riak allows the user to set a replication number for each bucket, which defaults to 3. When a

data object's key is mapped onto a given partition of the circular hash value space, Riak

automatically replicates the data onto the next two partitions (Figure 5) [10]. Riak supports multi

data center replication through the concept of “primary cluster” and “secondary clusters” [22].

Figure 5. Data replication in Riak [10].

Similar to Cassandra, Riak also supports tunable consistency for each data operation [21]. It

relies on mechanisms such as Vector Clock, Hinted Handoff, and Read Repair to resolve

conflicts and ensure consistency [10].

4. Data Indexing Support

There are two major categories of indexing involved in distributed NoSQL database systems:

primary indexing and secondary indexing. In terms of distributed index storage, there are two

ways of index partitioning: partition by original data or partition by index key. “Partition by

original data” means that each node in the cluster only maintains the secondary index for the

portion of the original data that is locally hosted by this node. In this case, when a query

involving an indexed field is evaluated, the query must be sent to every node in the cluster. Each

node will use the local portion of secondary index to do a “partial evaluation” of the query, and

return a subset of result. The final result is generated by combining results from all the nodes.

Figure 6 illustrates partition by original data. “Partition by index key” means that a global index

is built for the whole data set on all the nodes, and then distributed among the nodes by making

partitions with the key of the index. To evaluate a query about an indexed field value, only the

node maintaining the index for that queried field value is contacted, and it processes all related

index entries to get the query result. Figure 7 illustrates partition by index key.

Figure 6. Partition by original data. Figure 7. Partition by index key.

Partition by original data is good for handling complicated queries involving multiple fields and

constraints, because each node can partially evaluate the query by only accessing local data.

Although the query has to be broadcast to all nodes, the total amount of communication is much

smaller than the size of the relevant part of the indexes for each field. Partition by index key

works better when queries are simple, because the major part of evaluation is the processing and

transmission of the related index entries, and only the exact related node(s) need to be contacted.

4.1 HBase

Primary indexing

HBase builds a primary index on the row keys, which is conceptually similar to a distributed

multi-level B+-tree index. HBase maintains two global catalog tables: ROOT and META. ROOT

always has only one region, and its location is stored in ZooKeeper. ROOT keeps track of the

regions of the META table, and META keeps a list of all regions in the system, as well as which

region servers are hosting them [24]. On the region server, data are read from and written to

HFiles on HDFS, and the HFile format contains information about a multi-level B+-tree like data

structure [23]. The primary index is a clustered index because the data records are stored directly

in the index entries.

Secondary Indexing

HBase does not originally support secondary indexes for cell values. IndexedHBase extends

HBase with the capability of defining and building customizable index structures using HBase

tables. By using the index configuration file and user-defined pluggable indexer implementation,

it is possible to define various index structures, including B+-tree-like single field index,

multidimensional index, text index [44], geospatial index [45], or even multi-key index as

supported by MongoDB [30]. IndexedHBase has been successfully applied in building

multidimensional text indexes for supporting social data analysis applications [25].

Consistency between data and index

Since IndexedHBase directly uses HBase tables to store indexes, index updates are not atomically

associated with data updates. Eventual consistency between index updates and data updates is

completed at the level of milliseconds.

Secondary index partition scheme

Since cell values of the data table are used as row keys for the index tables, the index tables are

partitioned by index keys. A hybrid solution of partition by original data and partition by index

key can be achieved by first partition the original data table into multiple “sub-tables”, and then

build an index table for each “sub-table”. For example, in our experience in supporting social data

analysis applications [25], original data are partitioned by month into different tables, and then

separately indexed with index tables.

4.2 Cassandra

Primary indexing

The DHT architecture of Cassandra basically builds a distributed primary key hash index for the

row keys of column families. This primary index is a clustered index since data records are

contained in the index entries.

Secondary Indexing

Beyond primary key index, Cassandra supports creation of secondary indexes on any column

values [26]. The internal secondary index implementation depends whether the data type of the

column values is non-text data and text data.

For non-text column values, Cassandra can create hash indexes which are internally maintained

as hidden index column families [27]. This index column family stores a mapping from index

values to a sorted list of matching row keys. Since the index is a hash index, query results are not

sorted by the order of the indexed values. Besides, range queries on indexed columns cannot be

completed by using the index. Although an “equal” match in the index returns an ordered list

relevant row keys.

For text column values, the commercial version of Cassandar, DataStax, supports secondary

indexes on text data through integration with Solr [28]. Moreover, the indexes are stored as

Lucene index files [29], which means various query types, including equal queries, wildcard

queries, range queries, etc. can be supported.

Consistency between data and index

Data update + index update is an atomic operation, so immediate consistency is ensured between

the original data and index data.

Secondary index partition scheme

Each node maintains the secondary indexes for its own local part of original data. Therefore,

secondary indexes are partitioned by original data.

Limitations

Cassandra secondary indexes currently have several limitations. First, they can only index values

from single columns; multidimensional indexes as used in [25] are not supported. Second, as

mentioned above, indexes for non-text columns cannot be used to evaluate range queries. Finally,

even if a query specifies constraints on multiple indexed columns, only one index will be used to

quickly locate the related row keys. Range constraints can be specified on additional columns in

the query, but are checked against the original data instead of using indexes [26].

4.3 MongoDB

Primary indexing

MongoDB automatically forces the creation of a primary key index on the _id field of the

documents. Index entries are sorted by _id, but note that this primary key index is not a clustered

index in Database terms. I.e. the index entries only contains pointers to actual documents in the

MongoDB data files. Documents are not physically stored in the order of _id on disks.

Secondary Indexing

Beyond the primary index, MongoDB supports various secondary indexes for field values of

documents, including single field index, multidimensional index, multikey index, geospatial

index, text index, and hashed index [30]. Single field, multidimensional, and multikey indexes are

organized using B-tree structures. The geospatial index supports indexing using quad trees [47]

on 2-dimension geospatial data. The official documentation does not provide details about how

the text indexes are implemented, but it is known that basic features such as stopping, stemming,

and scoring are supported [48]. Text index in MongoDB is still in beta version. The hashed index

can be used to support both hash based data distribution and equality queries of field values in

documents, but obviously cannot be used for range queries.

Consistency between data and index

Data is indexed on the fly in the same atomic operation. Therefore, immediate consistency is

ensured between the original data and index data.

Secondary index partition scheme

Each shard maintains the secondary index for its local partition of the original data. Therefore,

secondary indexes are partitioned by original data.

4.4 Riak

Primary indexing

As explained in section 2.4, Riak builds a primary key hash index for its key/value pairs

through DHT. This index is a clustered index because data objects are directly stored together

with the index keys.

Secondary Indexing

Riak supports secondary indexes on the tagged attributes of the key/value pairs and inverted

indexes for text data contained in the value. For secondary indexes on tagged attributes, exact

match and range queries are supported. However, current Riak implementation forces the

limitation that one query can only use secondary index search on one indexed attribute (field).

Queries involving multiple indexed attributes have to be broken down as multiple queries; then

the results are merged to get the final result [31]. No details are given about the internal structures

used for secondary indexes in the official Riak documentation. According to the brief mention in

[46], it seems that a flat list of key/entries is used.

For inverted indexes on values of text type, text data contained in the values of key/value pairs

are parsed and indexed according to a pre-defined index schema. Similar to DataStax, Riak also

tries to integrate with the interface of Solr, and stores index using the Lucene file format, so as to

support various types of queries on text data, such as wildcard queries and range queries [32].

Beyond the basic inverted index structure, Riak supports a special feature called “inline fields”

[33]. If a field is specified as an “inline” field, its value will be attached to the document IDs in

the posting lists of every indexed field of the inverted index. Inline fields are useful for evaluating

queries involving multiple fields of text data, but it is not flexible enough in the sense that the

value of every inline field will appear in the posting list of every indexed field, which may cause

unnecessary indexing and storage overhead.

Consistency between data and index

Data update + index update is an atomic operation, so immediate consistency is ensured between

the original data and index data.

Secondary index partition scheme

For secondary indexes on tagged attributes, each node maintains the indexes for its local part of

original data. Therefore, the indexes are partitioned by original data. However, the text index is

partitioned by terms (keys in inverted index). In Riak, text index schemas are configured at the

level of buckets. I.e. all the key/value pairs in a configured bucket will be parsed and indexed

according to the same given schema. A global inverted index is created and maintained for all

key/value pairs added to that bucket, and then partitioned by terms in the inverted index, and

distributed among all the nodes in the ring.

5. Distributed Data Processing Support

5.1 HBase and Cassandra

HBase and Cassandra both support parallel data processing by integration with Hadoop

MapReduce [34][35][36], which is designed for fault tolerant parallel processing of large batches

of data. It implements the full semantics of the MapReduce computing model and applies a

comprehensive initialization process for setting up the runtime environment on the worker nodes.

Hadoop MapReduce uses disks on worker nodes to save intermediate data and does grouping and

sorting before passing them to reducers. A job can be configured to use zero or multiple reducers.

5.2 MongoDB

MongoDB provides two frameworks to apply parallel processing to large document collections:

aggregation pipeline [37] and MapReduce [38].

The aggregation pipeline completes aggregate computation on a collection of documents by

applying a pipeline of data operators, such as match, project, group, etc. By using proper

operators such as match and skip at the beginning of the pipeline, the framework is able to take

advantage of existing indexes to limit the scope of processing to only a related subset of

documents in the collection and thus achieve better performance. Currently MongoDB

implementation enforces several important limits on the usage of aggregation pipelines, including

input data types, final result size, and memory usage by operators [39]. This implies that the

pipeline operators operate completely in memory and does not use external disk storage for

computations such as sorting and grouping.

The MapReduce framework is designed to support aggregate computations that go beyond the

limits of the aggregation pipeline, as well as extended data processing that cannot be finished by

the aggregation pipeline. MapReduce functions are written in JavaScript, and executed in

MongoDB daemon processes. Compared with Hadoop MapReduce, MongoDB MapReduce is

different in several aspects. First, reduce is only applied to the map outputs where a key has

multiple associated values. Keys associated with single values are not processed by reduce.

Second, besides map and reduce, an extra finalize phase can be applied to further process the

outputs from reduce. Third, a special “incremental MapReduce” mechanism is provided to

support dynamically growing collections of documents. This mechanism allows reduce to be used

for merging the results from the latest MapReduce job and previous MapReduce jobs. Fourth, the

framework supports an option for choosing the way intermediate data are stored and transmitted.

The default mode stores intermediated data on local disks of the nodes, but the client can specify

to only use memory for intermediated data storage, in which case a limit is enforced on the total

size of key/value pairs from the map output. Finally, functions written in JavaScript may limit the

capabilities of map and reduce. For example, it is hard or even impossible to access an outside

data resource such as a database or distributed file system [40][41] to facilitate the computation

carried out in map and reduce.

5.3 Riak

Riak provides a lightweight MapReduce framework for users to query the data by defining

MapReduce functions in JavaScript or Erlang []. Furthermore, Riak supports MapReduce over the

search results by using secondary indexes or text indexes. Riak MapReduce is different from

Hadoop MapReduce in several ways. There is always only one reducer running for each

MapReduce job. Intermediate data are transmitted directly from mappers to the reducer without

being sorted or grouped. The reducer relies on its memory stack to store the whole list of

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is

not suitable for processing large datasets.

6. Summary

Table 1 provides a summary of this report.

Table 1. Comparison of representative distributed NoSQL databases

 HBase Cassandra MongoDB Riak

Data model Table -> column

family -> column

-> version -> cell

value

Table (column

family) -> column ->

cell value

Collection ->

document

Bucket ->

key/value with

tagged metadata

Architecture HMaster +

region servers.

HMaster handles

failure recovery

and region splits.

Decentralized DHT.

Replication, failure

recovery and node

join/departure are

handled in a

decentralized

manner.

Config servers +

data operation

routers + shards.

Within a shard: one

primary + multiple

secondaries +

arbiters. Replication

and failure recovery

handled at the shard

level.

Decentralized

DHT.

Replication,

failure recovery

and node

join/departure

are handled in a

decentralized

manner.

Data distribution

mechanism

Key-range based

distribution.

Key-range based

distribution and hash

based distribution.

Key-range based

distribution and hash

based distribution.

Hash based

distribution.

Data replication

and consistency

model

Decided by

HDFS. No “data

center aware”

replica

placement.

Complete

consistency.

Configurable

replication policy

with data center

awareness. Tunable

eventual consistency

for each data

operation.

Replication level

configured through

secondaries.

Eventual consistency

between primary and

secondaries. Tunable

eventual consistency

for each operation.

Replication

level configured

at the bucket

level. Tunable

eventual

consistency for

each data

operation.

Data indexing

support

No original

secondary

indexing support.

Customizable

indexing with

IndexedHBase.

Eventual

consistency

between data and

index.

Secondary hash

indexes implemented

as hidden column

families for non-text

data, and as Lucene

files for text data.

Nodes maintain

secondary indexes

locally. Atomic data

+ index updates.

B-tree for single-

field,

multidimensional,

and multikey

indexes. Quad tree

for geospatial index.

Text index, and hash

index also supported.

Indexes are locally

maintained by shard

members.

Secondary

indexes for

tagged metadata

maintained

locally, and text

index for text

data maintained

globally.

Atomic data +

index updates.

Distributed data

processing

support

Hadoop

MapReduce.

Hadoop MapReduce. Aggregation pipeline

for aggregation

operations and Map-

Reduce-Finalize for

more complicated

operations.

Intermediate data

storage can be

configured to use

disks or not.

A lightweight

MapReduce

framework for

query purposes.

In-memory

intermediate

data storage +

single reducer.

References

[1] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A. and Gruber, R.

2006. Bigtable: A Distributed Storage System for Structured Data. In Proceedings of the 7th Symposium on

Operating System Design and Implementation (Seattle, WA, USA, November 06-08, 2006). OSDI '06. USENIX

Association Berkeley, CA, 205-218.

[2] Understanding the Cassandra Data Model. Apache Cassandra 0.8 documentation. Available at

http://www.datastax.com/docs/0.8/ddl/index.

[3] Partitioners. Cassandra Wiki. Available at http://wiki.apache.org/cassandra/Partitioners.

[4] Williams, D. 2010. Cassandra: RandomPartitioner vs OrderPreservingPartitioner. Blog post available at

http://ria101.wordpress.com/2010/02/22/cassandra-randompartitioner-vs-orderpreservingpartitioner/.

[5] Lai, M., Koontz, E., Purtell, A. 2012. Coprocessor Introduction. Apache HBase blog post available at

http://blogs.apache.org/hbase/entry/coprocessor_introduction.

[6] MongoDB Glossary. MongoDB documentation available at

http://docs.mongodb.org/manual/reference/glossary/#term-collection.

[7] Introduction to MongoDB. MongoDB documentation available at

http://docs.mongodb.org/manual/core/introduction/.

[8] Data Modeling Introduction. MongoDB documentation available at http://docs.mongodb.org/manual/core/data-

modeling-introduction/.

[9] Reference for the “orderby” operator. MongoDB documentation available at

http://docs.mongodb.org/manual/reference/operator/meta/orderby/.

[10] Riak introduction. Riak documentation available at http://docs.basho.com/riak/latest/theory/why-riak/.

[11] Soztutar, E. Apache HBase Region Splitting and Merging. Blog post available at

http://hortonworks.com/blog/apache-hbase-region-splitting-and-merging/.

[12] Sharding Introduction. MongoDB documentation available at http://docs.mongodb.org/manual/core/sharding-

introduction/.

[13] Peng, D., Dabek, F. 2010. Large-scale Incremental Processing Using Distributed Transactions and Notifications.

Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation, (USENIX 2010).

[14] Lakshman, A., Malik, P. 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating

Systems Review. 44(2): 35-40. 2010

[15] George, L. HBase: The Definitive Guide. 2011. O’Reilly Media, Inc. September 2011.

[16] About Data Consistency in Cassandra. Apache Cassandra 1.1 documentation. Available at

http://www.datastax.com/docs/1.1/dml/data_consistency.

[17] Replica Set Members. MongoDB documentation available at http://docs.mongodb.org/manual/core/replica-set-

members/.

[18] Data Center Awareness. MongoDB documentation available at http://docs.mongodb.org/manual/data-center-

awareness/.

[19] On Distributed Consistency - Part 2 - Some Eventual Consistency Forms. 2010. MongoDB blog available at

http://blog.mongodb.org/post/498145601/on-distributed-consistency-part-2-some-eventual.

[20] Read Preference. MongoDB documentation available at http://docs.mongodb.org/manual/core/read-preference/.

[21] Eventual Consistency. Riak documentation available at

http://docs.basho.com/riak/latest/theory/concepts/Eventual-Consistency/.

[22] Multi Data Center Replication: Architecture. Riak documentation available at

http://docs.basho.com/riakee/latest/cookbooks/Multi-Data-Center-Replication-Architecture/.

[23] Bertozzi, M. Apache HBase I/O – HFile. 2012. Blog post available at

http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/.

[24] Catalog Tables. HBase documentation available at http://hbase.apache.org/book/arch.catalog.html.

[25] Gao X., Roth, E., McKelvey, K., Davis, C., Younge, A., Ferrara, E., Menczer, F., Qiu, J. 2013. Supporting a

Social Media Observatory with Customizable Index Structures - Architecture and Performance. Book chapter to

appear in Cloud Computing for Data Intensive Applications, to be published by Springer Publisher, 2014.

[26] About Indexes in Cassandra. Cassandra 1.1 documentation available at

http://www.datastax.com/docs/1.1/ddl/indexes.

http://www.datastax.com/docs/0.8/ddl/index
http://wiki.apache.org/cassandra/Partitioners
http://ria101.wordpress.com/2010/02/22/cassandra-randompartitioner-vs-orderpreservingpartitioner/
http://blogs.apache.org/hbase/entry/coprocessor_introduction
http://docs.mongodb.org/manual/reference/glossary/#term-collection
http://docs.mongodb.org/manual/core/introduction/
http://docs.mongodb.org/manual/core/data-modeling-introduction/
http://docs.mongodb.org/manual/core/data-modeling-introduction/
http://docs.mongodb.org/manual/reference/operator/meta/orderby/
http://docs.basho.com/riak/latest/theory/why-riak/
http://hortonworks.com/blog/apache-hbase-region-splitting-and-merging/
http://docs.mongodb.org/manual/core/sharding-introduction/
http://docs.mongodb.org/manual/core/sharding-introduction/
http://www.datastax.com/docs/1.1/dml/data_consistency
http://docs.mongodb.org/manual/core/replica-set-members/
http://docs.mongodb.org/manual/core/replica-set-members/
http://docs.mongodb.org/manual/data-center-awareness/
http://docs.mongodb.org/manual/data-center-awareness/
http://blog.mongodb.org/post/498145601/on-distributed-consistency-part-2-some-eventual
http://docs.mongodb.org/manual/core/read-preference/
http://docs.basho.com/riak/latest/theory/concepts/Eventual-Consistency/
http://docs.basho.com/riakee/latest/cookbooks/Multi-Data-Center-Replication-Architecture/
http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/
http://hbase.apache.org/book/arch.catalog.html
http://www.datastax.com/docs/1.1/ddl/indexes

[27] How do secondary indices work? From the Cassandra users mailing group, available at http://cassandra-user-

incubator-apache-org.3065146.n2.nabble.com/Re-How-do-secondary-indices-work-td6005345.html.

[28] DataStax Enterprise: Cassandra with Solr Integration Details. DataStax Enterprise 2.0 documentation available at

http://www.datastax.com/dev/blog/datastax-enterprise-cassandra-with-solr-integration-details.

[29] Apache Lucene - Index File Formats. Lucene documentation available at

http://lucene.apache.org/core/3_5_0/fileformats.html.

[30] Index Introduction. MongoDB documentation available at http://docs.mongodb.org/manual/core/indexes-

introduction/.

[31] Using Secondary Indexes. Riak documentation available at http://docs.basho.com/riak/latest/dev/using/2i/.

[32] Using Search. Riak documentation available at http://docs.basho.com/riak/latest/dev/using/search/.

[33] Zezeski, R. Boosting Riak Search Query Performance with Inline Fields. 2011. Blog post available at

http://basho.com/boosting-riak-search-query-performance-with-inline-fields/.

[34] MapReduce Tutorial. Hadoop documentation available at

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

[35] HBase and MapReduce. HBase documentation available at http://hbase.apache.org/book/mapreduce.html.

[36] Hadoop Support. Cassandra wiki page available at http://wiki.apache.org/cassandra/HadoopSupport.

[37] Aggregation Pipeline. MongoDB documentation available at http://docs.mongodb.org/manual/core/aggregation-

pipeline/.

[38] Map-Reduce. MongoDB documentation available at http://docs.mongodb.org/manual/core/map-reduce/#map-

reduce-behavior.

[39] Aggregation Pipeline Limits. MongoDB documentation available at

http://docs.mongodb.org/manual/core/aggregation-pipeline-limits/.

[40] Limitations with JavaScript. From online tutorial for JavaScript, available at http://cbtsam.com/jsl1/cbtsam-jsl1-

012.php.

[41] Chapman, S. What Javascript Can Not Do. Online article available at

http://javascript.about.com/od/reference/a/cannot.htm.

[42] Using MapReduce. Riak documentation available at http://docs.basho.com/riak/latest/dev/using/mapreduce/.

[43] Write Concern. MongoDB documentation available at http://docs.mongodb.org/manual/core/write-concern/.

[44] Gao, X., Nachankar, V., Qiu. J. 2011. Experimenting Lucene Index on HBase in an HPC Environment. 2011. In

Proceedings of the 1st workshop on High-Performance Computing meets Databases at Supercomputing 2011.

Seattle, WA, USA, November 18, 2011.

[45] Nishimura, S., Das, S., Agrawal, D., Abbadi, A. MD-HBase: A Scalable Multi-dimensional Data Infrastructure for

Location Aware Services. In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data

Management (MDM 2011). Luleå, Sweden, June 6-9, 2011.

[46] Advanced Secondary Indexes. Riak documentation available at http://docs.basho.com/riak/latest/dev/advanced/2i/.

[47] 2d Index Internals. MongoDB documentation available at http://docs.mongodb.org/manual/core/geospatial-

indexes/.

[48] Text Indexes. MongoDB documentation available at http://docs.mongodb.org/manual/core/index-text/.

http://cassandra-user-incubator-apache-org.3065146.n2.nabble.com/Re-How-do-secondary-indices-work-td6005345.html
http://cassandra-user-incubator-apache-org.3065146.n2.nabble.com/Re-How-do-secondary-indices-work-td6005345.html
http://www.datastax.com/dev/blog/datastax-enterprise-cassandra-with-solr-integration-details
http://lucene.apache.org/core/3_5_0/fileformats.html
http://docs.mongodb.org/manual/core/indexes-introduction/
http://docs.mongodb.org/manual/core/indexes-introduction/
http://docs.basho.com/riak/latest/dev/using/2i/
http://docs.basho.com/riak/latest/dev/using/search/
http://basho.com/boosting-riak-search-query-performance-with-inline-fields/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hbase.apache.org/book/mapreduce.html
http://wiki.apache.org/cassandra/HadoopSupport
http://docs.mongodb.org/manual/core/aggregation-pipeline/
http://docs.mongodb.org/manual/core/aggregation-pipeline/
http://docs.mongodb.org/manual/core/map-reduce/#map-reduce-behavior
http://docs.mongodb.org/manual/core/map-reduce/#map-reduce-behavior
http://docs.mongodb.org/manual/core/aggregation-pipeline-limits/
http://cbtsam.com/jsl1/cbtsam-jsl1-012.php
http://cbtsam.com/jsl1/cbtsam-jsl1-012.php
http://javascript.about.com/od/reference/a/cannot.htm
http://docs.basho.com/riak/latest/dev/using/mapreduce/
http://docs.mongodb.org/manual/core/write-concern/
http://docs.basho.com/riak/latest/dev/advanced/2i/
http://docs.mongodb.org/manual/core/geospatial-indexes/
http://docs.mongodb.org/manual/core/geospatial-indexes/
http://docs.mongodb.org/manual/core/index-text/

