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Abstract 

We study many Big Data applications from a variety of research and commercial areas and suggest a set 
of characteristic features and possible kernel benchmarks that stress those features for data analytics. We 
draw conclusions for the hardware and software architectures that are suggested by this analysis. 

1. Introduction 

With the proliferation of data intensive applications, there is a critical and timely need to understand these 
properties and the relationship between different applications. The aim of our work is to capture the 
essential and fundamental Big Data properties, and then to understand applications with those properties.  

There are many different types of Big Data applications, and we cover them broadly including both 
research and commercial cases. However our focus is on Science and Engineering research data-intensive 
applications. We compare and contrast some general properties of Big Data applications with classical 
HPC simulation applications.  Pulling together these observations, we identify five key system 
architectures and note different emphases of commercial and research use cases. However we point out 
that combining ideas from HPC and commercial Big Data systems leads to an attractive powerful Big 
Data software model. 

Section 2 describes the sources of information for our study and their properties. It also describes lessons 
from related studies of parallel computing. Section 3 describes the features of Big Data use cases and the 
3 facets into which we group them. We describe some generic kernels (mini-applications), termed Ogres, 
in the data analytics area. In section 4, we present implications for needed hardware and software while 
conclusions are in section 5. 

2. Sources of Information 

2.1. Data Intensive Use Cases 

In discussing the structure of Big Data applications, let us first discuss the inevitably incomplete input 
that we used to do our analysis. We have gained of course quite a bit of experience from our research over 
many years, but 3 explicit sources that we used were a recent use case survey by NIST from Fall 2013[1]; 
a survey of data intensive research applications by Jha et al. [2, 3]; and study of members of data analytics 
libraries including R[4], Mahout [5] and MLLib [6]. We follow with a summary of first two sources. 

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013 with a set of 
working groups covering Big Data Definitions, Taxonomies, Requirements, Security and Privacy 
Requirements, Reference Architectures White Paper Survey, Reference Architectures, Security and 
Privacy Reference Architectures and Big Data Technology Roadmap. The Requirements working group 
gathered 51 use cases from a public call and then analyzed in terms of requirements of a reference 
architecture [7]. Here we will look at them differently to identify common patterns and characteristics, 
which can be used to guide and evaluate Big Data hardware and software. The 51 use cases are organized 
into nine broad areas with the number of associated use cases in parentheses: Government Operation (4), 



Commercial (8), Defense (3), Healthcare and Life Sciences (10), Deep Learning and Social Media (6), 
The Ecosystem for Research (4), Astronomy and Physics (5); Earth, Environmental and Polar Science 
(10) and Energy (1).  

Note that the majority of use cases come from research applications but commercial, defense and 
government operations have some coverage. A template was prepared by the requirements working 
group, which allowed experts to categorize each use case by 26 features that included those below. 

Use case Actors/Stakeholders and their roles and responsibilities; use case goals and description. 
Specification of current analysis covering compute system, storage, networking and software.  
Characteristics of use case Big Data with Data Source (distributed/centralized), Volume (size), Velocity 
(e.g. real time), Variety (multiple datasets, mashup), Variability (rate of change). The so-called Big Data 
Science (collection, curation, analysis) with Veracity (Robustness Issues, semantics), Visualization, Data 
Quality (syntax), Data Types and Data Analytics. These detailed specifications were complemented by 
broad comments including Big Data Specific Challenges (Gaps), Mobility issues, Security & Privacy 
Requirements and identification of issues for generalizing this use case. 

The complete set of 51 responses with in addition a summary from the working group of applications, 
current status and futures as well as extracted requirements can be found in [7]. They are summarized in 
the Appendix which also gives 20 other use cases coming from the NBD-PWG which do not have the 
detailed 26 feature template recorded. These 20 cover enterprise data applications and security & privacy. 

The impressive NRC report [8] is a rich source of information. It has in chapter 2 several examples; most 
of these are also present in NIST study but NRC does have an interesting discussion of Big Data in 
Networking and Telecommunication that is omitted from NIST compilation. We will return to the 
important “Giants” in chapter 10 which are related to different facets of our Ogres. 

For the case of distributed applications there are at least two existing attempts to survey and analyze 
applications. In Jha et al [3], the authors examine at a high-level approximately 20 distinct scientific 
applications that have either been distributed by design or were distributed “by nature”.  They reduce the 
number of applications carefully examined to six representative applications. These applications range 
from the ubiquitous “@home” class of distributed applications, to Montage – an image reconstruction 
application which is now emblematic of loosely coupled workflows, to highly-specialized and 
performance oriented applications such as NEKTAR.  

Building upon [3], Jha et al [2] seek to understand distributed, dynamic and data-intensive applications 
(D3 Science) investigating the programming models and abstractions, the run-time and middleware 
services, and the computational infrastructure. The survey includes the following applications: NGS 
Analytics, CMB, Fusion, Industrial Incident Notification and Response, MODIS Data Processing, 
Distributed Network Intrusion Detection, ATLAS/WLCG, LSST, SOA Astronomy, Sensor Network 
Application, Climate, Interactive Exploration of Environmental Data, and Power Grids.  

2.2 Lessons from Parallel Computing 

Before discussing features and patterns of Big Data applications, it is instructive to consider the better 
understood parallel computing situation. Here the application requirements have been captured in many 
ways 

a) Benchmark Sets. These vary from full applications [9] to kernels or mini-applications such as 
the NAS Parallel Benchmarks [10, 11] or Parkbench [12] with the Top500 [13] pacing 
application Linpack (HPL) particularly well known [14]. The new sparse HPCG conjugate 



gradient benchmark is notable [14]. Note benchmarks can be specified via explicit code and/or 
specified by a “pencil and paper specification” that can be optimized in any way for a particular 
platform. 

b) Patterns or Templates. These can be similar to benchmarks but with different goals such as 
providing a generic framework that can be modified by users with details of their application as in 
Template book [15, 16]. Alternatively they can be aimed at illustrating different applications as in 
original Berkeley Dwarfs [17].  

In this paper, our approach is nearest that of the Dwarfs and one motivation for us calling our mini-
applications/kernels the Big Data Ogres. In looking at this previous work, we note that benchmarks often 
cover a variety of different application aspects and are accompanied by principles or folklore that can 
guide the writing of parallel code or designing suitable hardware and software. For example, data locality 
and cost of data movement, sparseness, Amdahl’s law, communication latency and bisection bandwidth 
and scaled speedup are associated with substantial folklore.  

The famous NAS Parallel Benchmarks (NPB) consists of MG: Multigrid, CG: Conjugate Gradient, FT: 
Fast Fourier Transform, IS: Integer sort, EP: Embarrassingly Parallel, BT: Block Tridiagonal, SP: Scalar 
Pentadiagonal, and LU: Lower-Upper symmetric Gauss Seidel, are pretty uniform. With the exception of 
EP, which is an application class, the other members are typical constituents of a low level library for 
parallel simulations. On the other hand the Berkeley Dwarfs are Dense Linear Algebra , Sparse Linear 
Algebra, Spectral Methods, N-Body Methods, Structured Grids, Unstructured Grids, MapReduce, 
Combinational Logic, Graph Traversal, Dynamic Programming, Backtrack and Branch-and-Bound, 
Graphical Models and Finite State Machines. The dwarfs are not exact kernels but describe problem from 
different points of view including programming model (MapReduce), numerical method (Grids, Spectral 
method), kernel structure (dense or sparse linear algebra), algorithm (dynamic programming) and 
application class (N-body) etc. We think that it is inevitable that both parallel computing and Big Data 
cannot be characterized with a single criterion and so we introduce multiple Orges, but with a common set 
of facets in several characterization directions. We anticipate that there will be a correlation between the 
specific facet values and Ogre type/characterization.  

2.3 Properties of the 51 NIST use cases 

Tables 1 to 3 summarize characteristics of the 51 use cases, which we will combine with other input for 
the Ogres. Note that Big Data and parallel programming are intrinsically linked as any Big Data analysis 
is inevitably processed in parallel. Parallel computing is almost always implemented by dividing the data 
between processors (data decomposition); the richness here is illustrated in Table 1 which lists the 
members of space that is decomposed for different use cases; of course these sources of parallelism are 
broadly applicable outside the 51 use cases they were extracted from. In Table 2, we identify 15 use case 
features that will be used later as components of the Ogre facets. The second column of Table 2 lists our 
estimate of the number of use cases that illustrate this feature; note these are not exclusive so any one use 
case will illustrate many features. 

It’s important to note that machine learning is commonly used but there is an interesting distinction 
between what are termed Local (LML) and Global machine learning (GML) in Table 2. In LML, there is 
parallelism over items of Table 1 and machine learning is applied separately to each item; needed 
machine learning parallelism is limited and is typified by use of accelerators (GPU). In GML, the 
machine learning is applied over the full dataset with MapReduce, MPI or equivalent. Typically GML 
comes from maximum likelihood or χ2 with a sum over the data items – documents, sequences, items to 
be sold, images etc. and often links (point-pairs). Usually GML is a sum of positive numbers as in least 



squares and is illustrated by algorithms like PageRank, clustering/community detection, mixture models, 
topic determination, Multidimensional scaling, and (Deep) Learning Networks. Somewhat quixotically, 
GML can be termed Exascale Global Optimization or EGO.  

Table 1: What is Parallelism Over for NIST Use Cases? 
General Class Examples 

People Users (but see below) or Subjects of application and often both 
Decision makers Researchers or doctors (users of application) 

Items 

Experimental observations 
Contents of online store 
Images or “Electronic Information nuggets” 
EMR: Electronic Medical Records (often similar to people parallelism) 
Protein or Gene Sequences 
Material properties, Manufactured Object specifications, etc., in custom dataset 

Modelled entities Vehicles and people 
Sensors Internet of Things 
Events Detected anomalies in telescope, credit card or atmospheric data 
Graph Nodes RDF databases 
Regular Nodes Simple nodes as in a learning network 
Information Units Tweets, Blogs, Documents, Web Pages, etc. and characters/words in them 
Files or data To be backed up, moved or assigned metadata 
Particles/cells/ 
mesh points 

Used in parallel simulations 

Table 2: Some Features of NIST Use Cases 
Abbreviation # Description 
PP 26 Pleasingly Parallel or Map Only 
MR 18 Classic MapReduce MR (add MRStat below for full count) 
MRStat 7 Simple version of MR where key computations are simple reduction as found in 

statistical averages such as histograms and averages 
MRIter 23 Iterative MapReduce or MPI 
Graph 9 Complex graph data structure needed in analysis  
Fusion 11 Integrate diverse data to aid discovery/decision making; could involve 

sophisticated algorithms or could just be a portal 
Streaming 41  Some data comes in incrementally and is processed this way 
Classify 30 Classification: divide data into categories 
S/Q 12 Index, Search and Query 
CF 4 Collaborative Filtering for recommender engines 
LML 36 Local Machine Learning (Independent for each parallel entity) 
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS,  

Large Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief 
Propagation, Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt . Can 
call EGO or Exascale Global Optimization with scalable parallel algorithm 

 51 Workflow: Universal so no label 
GIS 16 Geotagged data and often displayed in ESRI, Microsoft Virtual Earth, Google 

Earth, GeoServer etc. 
HPC 5 Classic large-scale simulation of cosmos, materials, etc. generating 

(visualization) data 
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents 



The difference between LML and GML is illustrated in Table 3, which contrasts 9 of the 51 NIST use 
cases that involve image based data. For example, use case 18 with light source data is largely 
independent machine learning on each image from the source i.e. LML. In contrast deep learning in use 
case 26, is constructing a learning network integrating all the images. 

2.4 Properties of distributed use cases 

In the process of reduction and classification, the authors of [2, 3] analyze the structure of applications 
and find commonalities; they introduce the term “vectors” to capture four essentially orthogonal but 
critical properties that determine both the development and the execution of the application. These vectors 
are: execution unit, communication, coordination and an execution environment. The first three are 
internal properties of a distributed application, whereas the latter is essentially an external property. Based 
upon recurring values of vectors the authors propose a set of common patterns that help elucidate the 
structure of the distributed applications. It is worth noting, that vectors and patterns for distributed 
applications do not provide insight into performance aspects of the applications. 

In [2], the authors propose a framework for describing applications, distributed and dynamic data and 
infrastructure. Figure 1 shows the data lifecycle model used for the analysis capturing both applications 
using sensor and computationally generated data. 

 

Figure 1 Application Stages 

Table 3: 9 Image-based NIST Use Cases 
Use Case Title Application Features 
17 Pathology Imaging/ 

Digital Pathology 
Moving to terabyte size 3D images, Global 
Classification 

PP, LML, MR 
for search 

18 Light sources Biology and Materials PP, LML 
26  Large-scale Deep 

Learning 
Stanford ran 10 million images and 11 billion 
parameters on a 64 GPU HPC; vision (drive 
car), speech, and Natural Language Processing 

GML 

27 Organizing large-
scale, unstructured 
collections of photos 

Fit position and camera direction to assemble 
3D photo ensemble 

GML 

36 Catalina Real-Time 
Transient Synoptic 
Sky Survey (CRTS) 

Processing of individual images for events 
based on classification of image structure 
(GML) 

PP, LML, 
GML 

43 Radar Data Analysis 
for CReSIS Remote 
Sensing of Ice Sheets 

Identify glacier beds and snow layers 
See GML when one addresses full ice sheet 

PP, LML 
moving to 
GML  

44  UAVSAR Data 
Processing,  

Find and display slippage from radar images. 
Includes Data Product Delivery, and Data 
Services 

PP 

45, 46 Analysis of Simulation 
visualizations 

Find paths, classify orbits, classify patterns that 
signal earthquakes, instabilities, climate, 
turbulence 

PP LML 
?GML 



The authors call out the Big Data aspects, the dynamic aspects and the distributed aspects of a large set of 
applications, and introduce quantitative estimates for various performance related properties. 

The Table 4 below (from [3]) shows the specific values of the “DPA vectors” for the set of six distinct 
applications investigated. It is interesting to note that the categorization did not lead to well-defined and 
non-overlapping classification of application, as the complexity of considering the end-to-end aspects and 
the diverse ways in which applications are utilized, resulted in classes that had overlapping 
characteristics. 

3. The Big Data Ogres and their Three Facets 

Synthesizing lessons learned from HPC, distributed applications and the NIST use case, given 
above we argue that there is a need to construct classes of 
mini-applications that facilitate the understanding and 
characterization of the Big Data properties of these 
applications. We further introduce 3 facets or classification 
dimensions or features to categorize Big Data applications. These 
are Problem architecture, Computational features and Data Source 
or Style. There are of course other ways of looking at the Ogres 
and our work should be treated as an initial suggestion for further 
discussion. These facets build on earlier discussion – especially 
Table 2. Note that a given application can be made up of 
components with different characteristics in Ogre Facet classification. We will reference the 7 
computational giants G1-G7 from the NRC report [8] recorded in Table 5. These are important big data 
patterns but the Ogres go into more detail. The final subsection discusses a selection of kernel Ogres 
focusing on analytics. We intend to follow up with other Ogre “mini-apps” or “kernels” covering areas 
like data intensive workflows. 

3.1 Problem Architecture Facet of Ogres 

Table 4: Characteristics of 6 Distributed Applications 
Application 
Example 

Execution Unit Communication Coordination  Execution 
Environment 

Montage Multiple sequential and 
parallel executable 

Files Dataflow 
(DAG) 

Dynamic process 
creation, execution 

NEKTAR Multiple concurrent 
parallel executables 

Stream based Dataflow Co-scheduling, data 
streaming, async. I/O  

Replica-
Exchange 

Multiple seq. and 
parallel executables 

Pub/sub Dataflow and 
events 

Decoupled 
coordination and 
messaging 

Climate 
Prediction 
(generation) 

Multiple seq. & parallel 
executables 

Files and 
messages 

Master-
Worker, 
events 

@Home (BOINC) 

Climate 
Prediction 
(analysis) 

 Multiple seq. & parallel 
executables 

 Files and 
messages 

Dataflow  Dynamics process 
creation, workflow 
execution 

SCOOP   Multiple Executable Files and 
messages 

Dataflow Preemptive scheduling, 
reservations 

Coupled 
Fusion  

 Multiple executable Stream-based Dataflow Co-scheduling, data 
streaming, async I/O 

Table 5: 7 Computational Giants of  
Massive Data Analysis [8] 

G1 Basic Statistics 
G2 Generalized N-Body Problems 
G3 Graph-Theoretic Computations 
G4 Linear Algebraic Computations 
G5 Optimizations 
G6 Integration 
G7 Alignment Problems 



This facet describes the overall structure of the application and determines the overall software and is an 
important driver of the software and hardware architecture discussed later. We have already stressed the 
importance of and distinction between Local (LML) and Global (GML) Machine Learning. These are 
often associated with Expectation Maximization and Steepest descent methods. 

3.2 Computational features Facet of Ogres 

Table 7: Computational Features Facet of Ogres 
Flops per byte: important for performance 
Communication Interconnect requirements;  
Is application (graph) constant or dynamic? 
Most applications consist of a set of interconnected entities; is this regular as a set of pixels or is it a 
complicated irregular graph? 
Is communication BSP or Asynchronous? In latter case shared memory may be attractive; 
Are algorithms Iterative or not? 
Data Abstraction: key-value, pixel, graph, vector, HDF5 etc. 
Are data points in metric or non-metric spaces (G2)?  
Is algorithm O(N2) or O(N) (up to logs) for N points per iteration (G2) 
Core libraries needed: matrix-matrix/vector algebra, conjugate gradient, reduction, broadcast …. (G4) 
This facet contains application characteristics that are familiar from the simulation domain. Distinctive 
are the important data abstraction layer that we would recommend highlighting in the software 
architecture rather than burying as now in particular packages like Hadoop (key-value) and Giraph 
(graph). Simulations are often setup in well-defined physical spaces but data is often more abstract and 
the algorithms are typically quite different for metric and non-metric spaces. In contrast to the problem 
architecture facet, the computational features facet have a direct handle/relevance to performance. Note 
non-metric space algorithms are often O(N2). As discussed in the NRC report, there is a lot of opportunity 
to incorporate sophisticated new algorithms to reduce O(N2) to O(N and logs). This is commonly used in 
search and sort algorithms but not yet in computation in spite of promising initial work [8, 18, 19] 

3.3 Data Source and Data Style Facet of Ogres 

Table 8: Data Source and Style Facet of Ogres 
SQL or NoSQL: NoSQL includes Document, Column, Key-value, Graph, Triple store 
Other Enterprise data systems: 10 examples from NIST [1] integrate SQL/NoSQL 
Set of Files: as managed in iRODS and extremely common in scientific research 
File, Object, Block and Data-parallel (HDFS) raw storage: Separated from computing? 
Internet of Things: 24 [20] to 50 (Cisco [21, 22]) billion devices on the Internet by 2020 

 Table 6: Problem Architecture Facet of Ogres (Meta or Macro Pattern) 
Pleasingly 
Parallel 

as in BLAST, Protein docking, some (bio-)imagery  including Local Analytics or Local 
Machine Learning with pleasingly parallel filtering, as in light source data, radar images  

Classic 
MapReduce 

Search, Index and Query and Classification algorithms like collaborative filtering (G1 
for MRStat in Table 2, G7) 

GML Global Analytics or Global Machine Learning requiring iterative runtime (G5, G6) 
Graph Problem set up as a graph as opposed to vector, grid (G3) 
SPMD SPMD (Single Program Multiple Data) 
BSP Bulk Synchronous Processing: well-defined compute-communication phases 
Fusion or 
Workflow 

Knowledge discovery often involves fusion of multiple methods. All applications often 
involve orchestration (workflow) of multiple components 

Agents As used in epidemiology, discrete event simulations etc. Swarm approaches 



Streaming: Incremental update of datasets with new algorithms to achieve real-time response (G7) 
HPC simulations generate major (visualization) output that often needs to mined  
GIS (Geographical Information Systems) provide attractive access to geospatial data 
Before data gets to compute system, there is often an initial data gathering phase which is 
characterized by a block size and timing. Block size varies from month (Remote Sensing, Seismic) 
today (genomic) to seconds or lower (Real time control, streaming) 
There are storage/compute system styles: Shared, Dedicated, Permanent, Transient 
Other characteristics are needed for permanent auxiliary/comparison datasets and these could be 
interdisciplinary, implying nontrivial data movement/replication 
The facet of table 8 covers the acquisition, storage, management and access to the data. The mantra of 
bringing computing to the data is an important principle especially for the Internet of Things when it is 
often not practical as backend (clouds) needed to provide adequate computing. It is interesting that the 
HPC approach of large shared file systems using technologies like Lustre is rather different from 
commercial systems that use databases or HDFS.  Figure 1 stresses that an important source of data is the 
output of other programs as data is streamed through a workflow. 

3.4 Analytics Algorithm/Kernel Ogres 

Table 9: Analytics Ogres (microPatterns) 
Pleasingly Parallel (Map Only) or Local Machine Learning: ~any algorithm 

Map-Reduce 
Search, Query, Index: Dominant commercial use and important in Science with less users 
Recommender Systems including Collaborative filtering: Major commercial use, Little use in Science 
Summarizing statistics (MRStat) as in LHC Data analysis (histograms) (G1) 
Linear Classifiers: Bayes, Random Forests 

Alignment and Streaming (G7) 
Genomic Alignment, Incremental Classifiers 

Global Analytics – Nonlinear Solvers (Structure depends on Objective Function) (G5, G6) 
Stochastic Gradient Descent SGD 
(L-)BFGS approximation to Newton’s Method 
Levenberg-Marquardt solver 

Global Analytics – Map-Collective (See Mahout, MLlib) (G2, G4, G6) 
Outlier Detection 
Clustering (many methods) related to community identification in networks 
Mixture Models, LDA (Latent Dirichlet Allocation), PLSI (Probabilistic Latent Semantic Indexing) 
SVM and Logistic Regression 
PageRank (find leading eigenvector of sparse matrix) 
SVD (Singular Value Decomposition) 
MDS (Multidimensional Scaling) 
Learning Neural Networks (Deep Learning) 
Hidden Markov Models 

Global Analytics – Map-Communication (targets for Giraph) (G3) 
Graph Structure (Communities, subgraphs/motifs, diameter, maximal cliques, connected components) 
Network Dynamics - Graph simulation Algorithms (epidemiology) 

Global Analytics – Asynchronous Shared Memory (may be distributed algorithms) 
Graph Structure (Betweenness centrality, shortest path) (G3) 
Linear/Quadratic Programming, Combinatorial Optimization, Branch and Bound (G5) 
The final Ogre Table 9 records particular data analysis algorithms that play the same role as say the 
members of the NAS parallel benchmarks. These are deliberately kernels and further work is needed to 



specify more precisely. For example, there are many very different outlier and clustering algorithms 
corresponding to different scenarios (such as metric or non-metric spaces) and goals (such as tradeoff 
between performance and quality). We are developing with colleagues, benchmarks in the areas identified 
in Table 9. One should also introduce Ogres corresponding to full applications and workflows. These are 
important but not discussed here. We believe that the set of facets that will be needed to understand these 
other mini-apps will be common across Ogres.  

4. Hardware and Software Architecture Issues 

4.1 Five Important Architectures 

Table 10: Distinctive Software/Hardware Architectures for Data Analytics 
1 Pleasingly Parallel 

(Map Only) 
Includes local machine learning (LML) as in parallel decomposition over 
items and apply data processing to each item. Hadoop could be used but also 
other High Throughput Computing or Many task tools 

2 Classic MapReduce Includes MRStat, search applications and those using collaborative filtering 
and motif finding implemented using classic MapReduce (Hadoop) 

3 Iterative Map-
Collective 

Iterative MapReduce using Collective Communication as needed in 
clustering – Hadoop with Harp, Spark etc. 

4 Iterative Map-
Communication 

Iterative MapReduce such as Giraph with point-to-point communication and 
includes most graph algorithms such as maximum clique, connected 
component, finding diameter, community detection). Vary in difficulty of 
finding partitioning (classic parallel load balancing) 

5 Shared (Large) 
Memory 

Thread-based (event driven) graph algorithms such as shortest path and 
Betweenness centrality. Large memory applications 

In table 10, we present 5 distinct problem architecture that map into 5 distinct system architectures which 
seem to cover the Ogres and their facets discussed in previous section. 10.5 is the shared memory 
architecture needed for some graph algorithms that perform better here and also for some large memory 
applications. The central architectures are 10.1 to 10.4 which correspond exactly to the four forms of 
MapReduce that we have presented previously [23] but are summarized in figure 2. Note this only 
describes some core features of the facets in tables 6 and 7. There are many other issues that need to be 
addressed including support of workflow and the data systems captured in the facets of table 8. 

Figure 2: The Four forms of MapReduce that correspond to the four architectures of Table 10.1-10.4 

Note that we separate Map-Collective [24, 25] and Map-(Point to Point) Communication following the 
Apache projects Hadoop, Spark and Giraph that focus on these cases. These programming models or run 
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times differ in communication style, application abstraction (key-value versus graph) and possible 
scheduling/load-balancing. HPC with MPI suggests that one could integrate 10.3 and 10.4 into a single 
environment and this approach is illustrated by the Harp plug-in to Hadoop which supports both models.  

4.2 Comparison between Data Intensive and Simulation Problems 

We can use the Ogre facet analysis and the data analytics architectures to compare data intensive and 
simulation applications. There are some clear similarities with looking back at table 6, “Pleasingly 
parallel” (10.1), BSP and SPMD common in both arenas.  However the Classic MapReduce architecture 
(10.2) is a major big data paradigm but much less common in simulations with one example between the 
execution of multiple simulations (as in Quantum Monte Carlo) followed by a reduce operation to collect 
the results of different simulations. The Iterative Map-Collective architecture (10.3) is common in much 
Big Data analytics as in clustering where there is no local graph structure and the parallel algorithms 
involve large scale collectives but no point to point communication. The same structure is seen in N-body 
(long range force) or other “all-pairs” simulations without the locality typical from discretizing 
differential operators.  

Many simulation problems have the Map-Communication (10.4) architecture with many smallish point-
to-point messages coming from local interactions between points defining system to be simulated. The 
importance of sparse data structures and algorithms is well understood in simulations and is seen in some 
Big Data problems such as PageRank, which calculates the leading eigenvector of the sparse matrix 
formed by internet site links. Other Big Data sparse data structures are seen in user-item ratings and bags 
of words problem. Most items are rated by few users and many documents contain a small fraction of the 
word vocabulary. However important data analytics involve full matrix algorithms and for example recent 
papers [26, 27] on a new Multi-Dimensional Scaling method use conjugate gradient solvers with full 
matrices as opposed to the new sparse conjugate gradient benchmark HPCG being developed for 
supercomputer (Top500) evaluations [28]. 

Note that there are similarities between some Big Data graph problems and particle simulations with an 
unusual potential defined by the graph node connectivity. Both use the Map-Communication architecture 
and the links in a Big Data graph are equivalent to strength of force between the graph nodes considered 
as particles. In this analogy, many Big Data problems are “long range force” corresponding to a graph 
where all nodes are linked to each other. As in simulation case, these O(N2) problems are typically very 
compute intense but straightforward to parallelize efficiently. It is interesting to consider the analogue of 
the “fast multipole” methods for the fully connected Big Data problems which can dramatically improve 
the performance to O(N) or O(NlogN) as discussed in Sec. 3.3.  Finally note the network connections 
used in deep learning are sparse but in recent image interpretation studies [29], the network weights are 
block sparse (corresponding to links to pixel blocks) and can be formulated as full matrix operations with 
GPUs and MPI running efficiently with these blocks. 

The final architecture 10.5 (Shared Memory) is important in some applications but not heavily used in 
either simulations or Big Data although large memory systems are used extensively in gene assembly 
applications.  

The above discussion focuses on a qualitative comparison of Big Data applications with traditional 
simulation (HPC) applications viz., comparing the structure. As can be seen there are similarities as well 
as points of distinction. It is likely however, that that there will be significant differences in the 
“computational feature” facet of the two application classes, viz., the distribution of the values of different 



ratios (e.g., ratio of computing to I/O, ratio of memory to I/O etc.)  characterizing the computational 
feature will be different. We will investigate both quantitative and qualitative differences in future work. 

4.3 A Big Data Software Environment 

Table11: Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies 
Cross-Cutting 
Functionalities 

Message Protocols: 
Thrift, Protobuf 
Distributed 
Coordination: 
Zookeeper, JGroups 
Security & 
Privacy: 
InCommon, 
OpenStack 
Keystone, LDAP 
Monitoring: 
Ambari, Ganglia, 
Nagios, Inca 

 

Workflow-Orchestration: Oozie, ODE, Airavata, OODT (Tools), Pegasus, 
Kepler, Swift, Taverna, Trident, ActiveBPEL, BioKepler, Galaxy, IPython  
Application and Analytics: Mahout , MLlib , MLbase, CompLearn, R, 
Bioconductor, ImageJ, Scalapack, PetSc 
High level Programming: Hive, HCatalog, Pig, Shark, MRQL, Impala, Sawzall, 
Drill 
Basic Programming model and runtime, SPMD, Streaming, MapReduce, 
MPI: Hadoop, Spark, Twister, Stratosphere, Tez, Hama, Storm, S4, Samza, 
Giraph, Pregel, Pegasus 
Inter process communication Collectives, point-to-point, publish-subscribe: 
Hadoop, Spark, Harp, MPI, Netty, ZeroMQ, ActiveMQ, QPid, Kafka, Kestrel 
In-memory databases/caches: GORA (general object from NoSQL), 
Memcached, Redis (key value), Hazelcast, Ehcache 
Object-relational mapping: Hibernate, OpenJPA and JDBC Standard 
Extraction Tools: UIMA, Tika 
SQL: Oracle, MySQL, Phoenix, SciDB 
NoSQL: HBase, Accumulo, Cassandra, Solandra, MongoDB, CouchDB, Lucene, 
Solr, Berkeley DB, Azure Table, Dynamo, Riak, Voldemort. Neo4J, Yarcdata, 
Jena, Sesame, AllegroGraph, RYA 
File management: iRODS 
Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP) 
Cluster Resource Management: Mesos, Yarn, Helix, Llama, Condor, SGE, 
OpenPBS, Moab, Slurm, Torque 
File systems: Swift, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS 
Interoperability: Whirr, JClouds, OCCI, CDMI 
DevOps: Docker, Puppet, Chef, Ansible, Boto, Libcloud, Cobbler, CloudMesh 
IaaS Management from HPC to hypervisors: OpenStack, OpenNebula, 
Eucalyptus, CloudStack, vCloud, Amazon, Azure, Google     

 

We have described elsewhere [30-32] how we propose to implement Big Data applications exploiting the 
HPBDS architecture sketched in Table 11 [33]. This combines the best practice commercial Big Data 
software with an emphasis on Apache projects with HPC subsystems. Table 11 illustrates by green 
shading those layers where HPC adds significant value to the Apache stack ABDS. Note that high 
performance communication is known to be critical for simulations but it is also essential for many 
science big data applications. Commercial applications have large “search” (10.2) components 
corresponding to the huge number of users accessing commercial Big Data systems. In science, this step 
is necessary – especially for good data management – but is a much lower fraction of system use as the 
number of scientists accessing data is much lower than number of users of commercial Big Data. 

5 Discussion and Conclusion 

This is only an initial discussion about our objectives, scope and methodology, and is by no means a 
complete or comprehensive body of work. It is motivated by the fact that there are several existing efforts 
at describing and highlighting Big Data applications, yet many are domain or usage specific. We move 
beyond any specific set of applications, and focus on Big Data applications and analytics kernels Ogres 



that are generally considered to be of relevance/importance to science and engineering using a context 
that includes a limited set of commercial problems. Using this broad range of Big Data applications as our 
working set, this paper is an attempt at  distilling the Big Data properties (facets) and organizing the 
plethora of disparate Big Data applications using these properties. Although we validate using analytics 
kernels, this classification / organization will in turn shed light on and help provide better understanding 
of both the structure of S&E Big Data applications, as well as determinants of their performance. In 
Section 4, we show how a deeper appreciation of the Ogre facets will help design and implement better 
hardware and software systems.  

Appendix 71 NIST Use Cases 

The 71 NIST Use Cases with number in each broad area 
Government Operation(4): National Archives and Records Administration, Census Bureau 
Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search, Digital 
Materials, Cargo shipping (as in UPS) 
Defense(3): Sensors, Image surveillance, Situation Assessment 
Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis, Pathology, 
Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity 
Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, Crowd 
Sourcing, Network Science, NIST benchmark datasets 
The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light source 
experiments 
Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large Hadron Collider 
at CERN, Belle Accelerator II in Japan 
Earth, Environmental and Polar Science(10): Radar Scattering in Atmosphere, Earthquake, Ocean, 
Earth Observation, Ice sheet Radar scattering, Earth radar mapping, Climate simulation datasets, 
Atmospheric turbulence identification, Subsurface Biogeochemistry (microbes to watersheds), 
AmeriFlux and FLUXNET gas sensors 
Energy(1): Smart grid 
Enterprise Data Systems(10): Multiple users performing interactive queries and updates on a 
database with basic availability and eventual consistency (BASE); Perform real time analytics on data 
source streams and notify users when specified events occur; Move data from external data sources into 
a highly horizontally scalable data store, transform it using highly horizontally scalable processing (e.g. 
Map-Reduce), and return it to the horizontally scalable data store (ELT); Perform batch analytics on 
the data in a highly horizontally scalable data store using highly horizontally scalable processing (e.g 
MapReduce) with a user-friendly interface (e.g. SQL like); Perform interactive analytics on data in 
analytics-optimized database; Visualize data extracted from horizontally scalable Big Data store; Move 
data from a highly horizontally scalable data store into a traditional Enterprise Data Warehouse; 
Extract, process, and move data from data stores to archives; Combine data from Cloud databases and 
on premise data stores for analytics, data mining, and/or machine learning; Orchestrate multiple 
sequential and parallel data transformations and/or analytic processing using a workflow manager 
Security & Privacy(10): Consumer Digital Media Usage; Nielsen Homescan; Web Traffic Analytics; 
Health Information Exchange; Personal Genetic Privacy; Pharma Clinic Trial Data Sharing; Cyber-
security; Aviation Industry; Military - Unmanned Vehicle sensor data; Education - “Common Core” 
Student Performance Reporting 
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