
Towards an Understanding of Facets and Exemplars of Big Data Applications
Geoffrey C.Fox1, Shantenu Jha2, Judy Qiu1, Andre Luckow2

(1) School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA,

(2) RADICAL, Rutgers University, Piscataway, NJ 08854, USA

Abstract

We study many Big Data applications from a variety of research and commercial areas and suggest a set
of characteristic features and possible kernel benchmarks that stress those features for data analytics. We
draw conclusions for the hardware and software architectures that are suggested by this analysis.

1. Introduction

With the proliferation of data intensive applications, there is a critical and timely need to understand these
properties and the relationship between different applications. The aim of our work is to capture the
essential and fundamental Big Data properties, and then to understand applications with those properties.

There are many different types of Big Data applications, and we cover them broadly including both
research and commercial cases. However our focus is on Science and Engineering research data-intensive
applications. We compare and contrast some general properties of Big Data applications with classical
HPC simulation applications. Pulling together these observations, we identify five key system
architectures and note different emphases of commercial and research use cases. However we point out
that combining ideas from HPC and commercial Big Data systems leads to an attractive powerful Big
Data software model.

Section 2 describes the sources of information for our study and their properties. It also describes lessons
from related studies of parallel computing. Section 3 describes the features of Big Data use cases and the
3 facets into which we group them. We describe some generic kernels (mini-applications), termed Ogres,
in the data analytics area. In section 4, we present implications for needed hardware and software while
conclusions are in section 5.

2. Sources of Information

2.1. Data Intensive Use Cases

In discussing the structure of Big Data applications, let us first discuss the inevitably incomplete input
that we used to do our analysis. We have gained of course quite a bit of experience from our research over
many years, but 3 explicit sources that we used were a recent use case survey by NIST from Fall 2013[1];
a survey of data intensive research applications by Jha et al. [2, 3]; and study of members of data analytics
libraries including R[4], Mahout [5] and MLLib [6]. We follow with a summary of first two sources.

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013 with a set of
working groups covering Big Data Definitions, Taxonomies, Requirements, Security and Privacy
Requirements, Reference Architectures White Paper Survey, Reference Architectures, Security and
Privacy Reference Architectures and Big Data Technology Roadmap. The Requirements working group
gathered 51 use cases from a public call and then analyzed in terms of requirements of a reference
architecture [7]. Here we will look at them differently to identify common patterns and characteristics,
which can be used to guide and evaluate Big Data hardware and software. The 51 use cases are organized
into nine broad areas with the number of associated use cases in parentheses: Government Operation (4),

Commercial (8), Defense (3), Healthcare and Life Sciences (10), Deep Learning and Social Media (6),
The Ecosystem for Research (4), Astronomy and Physics (5); Earth, Environmental and Polar Science
(10) and Energy (1).

Note that the majority of use cases come from research applications but commercial, defense and
government operations have some coverage. A template was prepared by the requirements working
group, which allowed experts to categorize each use case by 26 features that included those below.

Use case Actors/Stakeholders and their roles and responsibilities; use case goals and description.
Specification of current analysis covering compute system, storage, networking and software.
Characteristics of use case Big Data with Data Source (distributed/centralized), Volume (size), Velocity
(e.g. real time), Variety (multiple datasets, mashup), Variability (rate of change). The so-called Big Data
Science (collection, curation, analysis) with Veracity (Robustness Issues, semantics), Visualization, Data
Quality (syntax), Data Types and Data Analytics. These detailed specifications were complemented by
broad comments including Big Data Specific Challenges (Gaps), Mobility issues, Security & Privacy
Requirements and identification of issues for generalizing this use case.

The complete set of 51 responses with in addition a summary from the working group of applications,
current status and futures as well as extracted requirements can be found in [7]. They are summarized in
the Appendix which also gives 20 other use cases coming from the NBD-PWG which do not have the
detailed 26 feature template recorded. These 20 cover enterprise data applications and security & privacy.

The impressive NRC report [8] is a rich source of information. It has in chapter 2 several examples; most
of these are also present in NIST study but NRC does have an interesting discussion of Big Data in
Networking and Telecommunication that is omitted from NIST compilation. We will return to the
important “Giants” in chapter 10 which are related to different facets of our Ogres.

For the case of distributed applications there are at least two existing attempts to survey and analyze
applications. In Jha et al [3], the authors examine at a high-level approximately 20 distinct scientific
applications that have either been distributed by design or were distributed “by nature”. They reduce the
number of applications carefully examined to six representative applications. These applications range
from the ubiquitous “@home” class of distributed applications, to Montage – an image reconstruction
application which is now emblematic of loosely coupled workflows, to highly-specialized and
performance oriented applications such as NEKTAR.

Building upon [3], Jha et al [2] seek to understand distributed, dynamic and data-intensive applications
(D3 Science) investigating the programming models and abstractions, the run-time and middleware
services, and the computational infrastructure. The survey includes the following applications: NGS
Analytics, CMB, Fusion, Industrial Incident Notification and Response, MODIS Data Processing,
Distributed Network Intrusion Detection, ATLAS/WLCG, LSST, SOA Astronomy, Sensor Network
Application, Climate, Interactive Exploration of Environmental Data, and Power Grids.

2.2 Lessons from Parallel Computing

Before discussing features and patterns of Big Data applications, it is instructive to consider the better
understood parallel computing situation. Here the application requirements have been captured in many
ways

a) Benchmark Sets. These vary from full applications [9] to kernels or mini-applications such as
the NAS Parallel Benchmarks [10, 11] or Parkbench [12] with the Top500 [13] pacing
application Linpack (HPL) particularly well known [14]. The new sparse HPCG conjugate

gradient benchmark is notable [14]. Note benchmarks can be specified via explicit code and/or
specified by a “pencil and paper specification” that can be optimized in any way for a particular
platform.

b) Patterns or Templates. These can be similar to benchmarks but with different goals such as
providing a generic framework that can be modified by users with details of their application as in
Template book [15, 16]. Alternatively they can be aimed at illustrating different applications as in
original Berkeley Dwarfs [17].

In this paper, our approach is nearest that of the Dwarfs and one motivation for us calling our mini-
applications/kernels the Big Data Ogres. In looking at this previous work, we note that benchmarks often
cover a variety of different application aspects and are accompanied by principles or folklore that can
guide the writing of parallel code or designing suitable hardware and software. For example, data locality
and cost of data movement, sparseness, Amdahl’s law, communication latency and bisection bandwidth
and scaled speedup are associated with substantial folklore.

The famous NAS Parallel Benchmarks (NPB) consists of MG: Multigrid, CG: Conjugate Gradient, FT:
Fast Fourier Transform, IS: Integer sort, EP: Embarrassingly Parallel, BT: Block Tridiagonal, SP: Scalar
Pentadiagonal, and LU: Lower-Upper symmetric Gauss Seidel, are pretty uniform. With the exception of
EP, which is an application class, the other members are typical constituents of a low level library for
parallel simulations. On the other hand the Berkeley Dwarfs are Dense Linear Algebra , Sparse Linear
Algebra, Spectral Methods, N-Body Methods, Structured Grids, Unstructured Grids, MapReduce,
Combinational Logic, Graph Traversal, Dynamic Programming, Backtrack and Branch-and-Bound,
Graphical Models and Finite State Machines. The dwarfs are not exact kernels but describe problem from
different points of view including programming model (MapReduce), numerical method (Grids, Spectral
method), kernel structure (dense or sparse linear algebra), algorithm (dynamic programming) and
application class (N-body) etc. We think that it is inevitable that both parallel computing and Big Data
cannot be characterized with a single criterion and so we introduce multiple Orges, but with a common set
of facets in several characterization directions. We anticipate that there will be a correlation between the
specific facet values and Ogre type/characterization.

2.3 Properties of the 51 NIST use cases

Tables 1 to 3 summarize characteristics of the 51 use cases, which we will combine with other input for
the Ogres. Note that Big Data and parallel programming are intrinsically linked as any Big Data analysis
is inevitably processed in parallel. Parallel computing is almost always implemented by dividing the data
between processors (data decomposition); the richness here is illustrated in Table 1 which lists the
members of space that is decomposed for different use cases; of course these sources of parallelism are
broadly applicable outside the 51 use cases they were extracted from. In Table 2, we identify 15 use case
features that will be used later as components of the Ogre facets. The second column of Table 2 lists our
estimate of the number of use cases that illustrate this feature; note these are not exclusive so any one use
case will illustrate many features.

It’s important to note that machine learning is commonly used but there is an interesting distinction
between what are termed Local (LML) and Global machine learning (GML) in Table 2. In LML, there is
parallelism over items of Table 1 and machine learning is applied separately to each item; needed
machine learning parallelism is limited and is typified by use of accelerators (GPU). In GML, the
machine learning is applied over the full dataset with MapReduce, MPI or equivalent. Typically GML
comes from maximum likelihood or χ2 with a sum over the data items – documents, sequences, items to
be sold, images etc. and often links (point-pairs). Usually GML is a sum of positive numbers as in least

squares and is illustrated by algorithms like PageRank, clustering/community detection, mixture models,
topic determination, Multidimensional scaling, and (Deep) Learning Networks. Somewhat quixotically,
GML can be termed Exascale Global Optimization or EGO.

Table 1: What is Parallelism Over for NIST Use Cases?
General Class Examples

People Users (but see below) or Subjects of application and often both
Decision makers Researchers or doctors (users of application)

Items

Experimental observations
Contents of online store
Images or “Electronic Information nuggets”
EMR: Electronic Medical Records (often similar to people parallelism)
Protein or Gene Sequences
Material properties, Manufactured Object specifications, etc., in custom dataset

Modelled entities Vehicles and people
Sensors Internet of Things
Events Detected anomalies in telescope, credit card or atmospheric data
Graph Nodes RDF databases
Regular Nodes Simple nodes as in a learning network
Information Units Tweets, Blogs, Documents, Web Pages, etc. and characters/words in them
Files or data To be backed up, moved or assigned metadata
Particles/cells/
mesh points

Used in parallel simulations

Table 2: Some Features of NIST Use Cases
Abbreviation # Description
PP 26 Pleasingly Parallel or Map Only
MR 18 Classic MapReduce MR (add MRStat below for full count)
MRStat 7 Simple version of MR where key computations are simple reduction as found in

statistical averages such as histograms and averages
MRIter 23 Iterative MapReduce or MPI
Graph 9 Complex graph data structure needed in analysis
Fusion 11 Integrate diverse data to aid discovery/decision making; could involve

sophisticated algorithms or could just be a portal
Streaming 41 Some data comes in incrementally and is processed this way
Classify 30 Classification: divide data into categories
S/Q 12 Index, Search and Query
CF 4 Collaborative Filtering for recommender engines
LML 36 Local Machine Learning (Independent for each parallel entity)
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS,

Large Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief
Propagation, Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt . Can
call EGO or Exascale Global Optimization with scalable parallel algorithm

 51 Workflow: Universal so no label
GIS 16 Geotagged data and often displayed in ESRI, Microsoft Virtual Earth, Google

Earth, GeoServer etc.
HPC 5 Classic large-scale simulation of cosmos, materials, etc. generating

(visualization) data
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents

The difference between LML and GML is illustrated in Table 3, which contrasts 9 of the 51 NIST use
cases that involve image based data. For example, use case 18 with light source data is largely
independent machine learning on each image from the source i.e. LML. In contrast deep learning in use
case 26, is constructing a learning network integrating all the images.

2.4 Properties of distributed use cases

In the process of reduction and classification, the authors of [2, 3] analyze the structure of applications
and find commonalities; they introduce the term “vectors” to capture four essentially orthogonal but
critical properties that determine both the development and the execution of the application. These vectors
are: execution unit, communication, coordination and an execution environment. The first three are
internal properties of a distributed application, whereas the latter is essentially an external property. Based
upon recurring values of vectors the authors propose a set of common patterns that help elucidate the
structure of the distributed applications. It is worth noting, that vectors and patterns for distributed
applications do not provide insight into performance aspects of the applications.

In [2], the authors propose a framework for describing applications, distributed and dynamic data and
infrastructure. Figure 1 shows the data lifecycle model used for the analysis capturing both applications
using sensor and computationally generated data.

Figure 1 Application Stages

Table 3: 9 Image-based NIST Use Cases
Use Case Title Application Features
17 Pathology Imaging/

Digital Pathology
Moving to terabyte size 3D images, Global
Classification

PP, LML, MR
for search

18 Light sources Biology and Materials PP, LML
26 Large-scale Deep

Learning
Stanford ran 10 million images and 11 billion
parameters on a 64 GPU HPC; vision (drive
car), speech, and Natural Language Processing

GML

27 Organizing large-
scale, unstructured
collections of photos

Fit position and camera direction to assemble
3D photo ensemble

GML

36 Catalina Real-Time
Transient Synoptic
Sky Survey (CRTS)

Processing of individual images for events
based on classification of image structure
(GML)

PP, LML,
GML

43 Radar Data Analysis
for CReSIS Remote
Sensing of Ice Sheets

Identify glacier beds and snow layers
See GML when one addresses full ice sheet

PP, LML
moving to
GML

44 UAVSAR Data
Processing,

Find and display slippage from radar images.
Includes Data Product Delivery, and Data
Services

PP

45, 46 Analysis of Simulation
visualizations

Find paths, classify orbits, classify patterns that
signal earthquakes, instabilities, climate,
turbulence

PP LML
?GML

The authors call out the Big Data aspects, the dynamic aspects and the distributed aspects of a large set of
applications, and introduce quantitative estimates for various performance related properties.

The Table 4 below (from [3]) shows the specific values of the “DPA vectors” for the set of six distinct
applications investigated. It is interesting to note that the categorization did not lead to well-defined and
non-overlapping classification of application, as the complexity of considering the end-to-end aspects and
the diverse ways in which applications are utilized, resulted in classes that had overlapping
characteristics.

3. The Big Data Ogres and their Three Facets

Synthesizing lessons learned from HPC, distributed applications and the NIST use case, given
above we argue that there is a need to construct classes of
mini-applications that facilitate the understanding and
characterization of the Big Data properties of these
applications. We further introduce 3 facets or classification
dimensions or features to categorize Big Data applications. These
are Problem architecture, Computational features and Data Source
or Style. There are of course other ways of looking at the Ogres
and our work should be treated as an initial suggestion for further
discussion. These facets build on earlier discussion – especially
Table 2. Note that a given application can be made up of
components with different characteristics in Ogre Facet classification. We will reference the 7
computational giants G1-G7 from the NRC report [8] recorded in Table 5. These are important big data
patterns but the Ogres go into more detail. The final subsection discusses a selection of kernel Ogres
focusing on analytics. We intend to follow up with other Ogre “mini-apps” or “kernels” covering areas
like data intensive workflows.

3.1 Problem Architecture Facet of Ogres

Table 4: Characteristics of 6 Distributed Applications
Application
Example

Execution Unit Communication Coordination Execution
Environment

Montage Multiple sequential and
parallel executable

Files Dataflow
(DAG)

Dynamic process
creation, execution

NEKTAR Multiple concurrent
parallel executables

Stream based Dataflow Co-scheduling, data
streaming, async. I/O

Replica-
Exchange

Multiple seq. and
parallel executables

Pub/sub Dataflow and
events

Decoupled
coordination and
messaging

Climate
Prediction
(generation)

Multiple seq. & parallel
executables

Files and
messages

Master-
Worker,
events

@Home (BOINC)

Climate
Prediction
(analysis)

 Multiple seq. & parallel
executables

 Files and
messages

Dataflow Dynamics process
creation, workflow
execution

SCOOP Multiple Executable Files and
messages

Dataflow Preemptive scheduling,
reservations

Coupled
Fusion

 Multiple executable Stream-based Dataflow Co-scheduling, data
streaming, async I/O

Table 5: 7 Computational Giants of
Massive Data Analysis [8]

G1 Basic Statistics
G2 Generalized N-Body Problems
G3 Graph-Theoretic Computations
G4 Linear Algebraic Computations
G5 Optimizations
G6 Integration
G7 Alignment Problems

This facet describes the overall structure of the application and determines the overall software and is an
important driver of the software and hardware architecture discussed later. We have already stressed the
importance of and distinction between Local (LML) and Global (GML) Machine Learning. These are
often associated with Expectation Maximization and Steepest descent methods.

3.2 Computational features Facet of Ogres

Table 7: Computational Features Facet of Ogres
Flops per byte: important for performance
Communication Interconnect requirements;
Is application (graph) constant or dynamic?
Most applications consist of a set of interconnected entities; is this regular as a set of pixels or is it a
complicated irregular graph?
Is communication BSP or Asynchronous? In latter case shared memory may be attractive;
Are algorithms Iterative or not?
Data Abstraction: key-value, pixel, graph, vector, HDF5 etc.
Are data points in metric or non-metric spaces (G2)?
Is algorithm O(N2) or O(N) (up to logs) for N points per iteration (G2)
Core libraries needed: matrix-matrix/vector algebra, conjugate gradient, reduction, broadcast …. (G4)
This facet contains application characteristics that are familiar from the simulation domain. Distinctive
are the important data abstraction layer that we would recommend highlighting in the software
architecture rather than burying as now in particular packages like Hadoop (key-value) and Giraph
(graph). Simulations are often setup in well-defined physical spaces but data is often more abstract and
the algorithms are typically quite different for metric and non-metric spaces. In contrast to the problem
architecture facet, the computational features facet have a direct handle/relevance to performance. Note
non-metric space algorithms are often O(N2). As discussed in the NRC report, there is a lot of opportunity
to incorporate sophisticated new algorithms to reduce O(N2) to O(N and logs). This is commonly used in
search and sort algorithms but not yet in computation in spite of promising initial work [8, 18, 19]

3.3 Data Source and Data Style Facet of Ogres

Table 8: Data Source and Style Facet of Ogres
SQL or NoSQL: NoSQL includes Document, Column, Key-value, Graph, Triple store
Other Enterprise data systems: 10 examples from NIST [1] integrate SQL/NoSQL
Set of Files: as managed in iRODS and extremely common in scientific research
File, Object, Block and Data-parallel (HDFS) raw storage: Separated from computing?
Internet of Things: 24 [20] to 50 (Cisco [21, 22]) billion devices on the Internet by 2020

 Table 6: Problem Architecture Facet of Ogres (Meta or Macro Pattern)
Pleasingly
Parallel

as in BLAST, Protein docking, some (bio-)imagery including Local Analytics or Local
Machine Learning with pleasingly parallel filtering, as in light source data, radar images

Classic
MapReduce

Search, Index and Query and Classification algorithms like collaborative filtering (G1
for MRStat in Table 2, G7)

GML Global Analytics or Global Machine Learning requiring iterative runtime (G5, G6)
Graph Problem set up as a graph as opposed to vector, grid (G3)
SPMD SPMD (Single Program Multiple Data)
BSP Bulk Synchronous Processing: well-defined compute-communication phases
Fusion or
Workflow

Knowledge discovery often involves fusion of multiple methods. All applications often
involve orchestration (workflow) of multiple components

Agents As used in epidemiology, discrete event simulations etc. Swarm approaches

Streaming: Incremental update of datasets with new algorithms to achieve real-time response (G7)
HPC simulations generate major (visualization) output that often needs to mined
GIS (Geographical Information Systems) provide attractive access to geospatial data
Before data gets to compute system, there is often an initial data gathering phase which is
characterized by a block size and timing. Block size varies from month (Remote Sensing, Seismic)
today (genomic) to seconds or lower (Real time control, streaming)
There are storage/compute system styles: Shared, Dedicated, Permanent, Transient
Other characteristics are needed for permanent auxiliary/comparison datasets and these could be
interdisciplinary, implying nontrivial data movement/replication
The facet of table 8 covers the acquisition, storage, management and access to the data. The mantra of
bringing computing to the data is an important principle especially for the Internet of Things when it is
often not practical as backend (clouds) needed to provide adequate computing. It is interesting that the
HPC approach of large shared file systems using technologies like Lustre is rather different from
commercial systems that use databases or HDFS. Figure 1 stresses that an important source of data is the
output of other programs as data is streamed through a workflow.

3.4 Analytics Algorithm/Kernel Ogres

Table 9: Analytics Ogres (microPatterns)
Pleasingly Parallel (Map Only) or Local Machine Learning: ~any algorithm

Map-Reduce
Search, Query, Index: Dominant commercial use and important in Science with less users
Recommender Systems including Collaborative filtering: Major commercial use, Little use in Science
Summarizing statistics (MRStat) as in LHC Data analysis (histograms) (G1)
Linear Classifiers: Bayes, Random Forests

Alignment and Streaming (G7)
Genomic Alignment, Incremental Classifiers

Global Analytics – Nonlinear Solvers (Structure depends on Objective Function) (G5, G6)
Stochastic Gradient Descent SGD
(L-)BFGS approximation to Newton’s Method
Levenberg-Marquardt solver

Global Analytics – Map-Collective (See Mahout, MLlib) (G2, G4, G6)
Outlier Detection
Clustering (many methods) related to community identification in networks
Mixture Models, LDA (Latent Dirichlet Allocation), PLSI (Probabilistic Latent Semantic Indexing)
SVM and Logistic Regression
PageRank (find leading eigenvector of sparse matrix)
SVD (Singular Value Decomposition)
MDS (Multidimensional Scaling)
Learning Neural Networks (Deep Learning)
Hidden Markov Models

Global Analytics – Map-Communication (targets for Giraph) (G3)
Graph Structure (Communities, subgraphs/motifs, diameter, maximal cliques, connected components)
Network Dynamics - Graph simulation Algorithms (epidemiology)

Global Analytics – Asynchronous Shared Memory (may be distributed algorithms)
Graph Structure (Betweenness centrality, shortest path) (G3)
Linear/Quadratic Programming, Combinatorial Optimization, Branch and Bound (G5)
The final Ogre Table 9 records particular data analysis algorithms that play the same role as say the
members of the NAS parallel benchmarks. These are deliberately kernels and further work is needed to

specify more precisely. For example, there are many very different outlier and clustering algorithms
corresponding to different scenarios (such as metric or non-metric spaces) and goals (such as tradeoff
between performance and quality). We are developing with colleagues, benchmarks in the areas identified
in Table 9. One should also introduce Ogres corresponding to full applications and workflows. These are
important but not discussed here. We believe that the set of facets that will be needed to understand these
other mini-apps will be common across Ogres.

4. Hardware and Software Architecture Issues

4.1 Five Important Architectures

Table 10: Distinctive Software/Hardware Architectures for Data Analytics
1 Pleasingly Parallel

(Map Only)
Includes local machine learning (LML) as in parallel decomposition over
items and apply data processing to each item. Hadoop could be used but also
other High Throughput Computing or Many task tools

2 Classic MapReduce Includes MRStat, search applications and those using collaborative filtering
and motif finding implemented using classic MapReduce (Hadoop)

3 Iterative Map-
Collective

Iterative MapReduce using Collective Communication as needed in
clustering – Hadoop with Harp, Spark etc.

4 Iterative Map-
Communication

Iterative MapReduce such as Giraph with point-to-point communication and
includes most graph algorithms such as maximum clique, connected
component, finding diameter, community detection). Vary in difficulty of
finding partitioning (classic parallel load balancing)

5 Shared (Large)
Memory

Thread-based (event driven) graph algorithms such as shortest path and
Betweenness centrality. Large memory applications

In table 10, we present 5 distinct problem architecture that map into 5 distinct system architectures which
seem to cover the Ogres and their facets discussed in previous section. 10.5 is the shared memory
architecture needed for some graph algorithms that perform better here and also for some large memory
applications. The central architectures are 10.1 to 10.4 which correspond exactly to the four forms of
MapReduce that we have presented previously [23] but are summarized in figure 2. Note this only
describes some core features of the facets in tables 6 and 7. There are many other issues that need to be
addressed including support of workflow and the data systems captured in the facets of table 8.

Figure 2: The Four forms of MapReduce that correspond to the four architectures of Table 10.1-10.4

Note that we separate Map-Collective [24, 25] and Map-(Point to Point) Communication following the
Apache projects Hadoop, Spark and Giraph that focus on these cases. These programming models or run

(1) Map Only
(4) Point to Point or
Map-Communication

(3) Iterative Map Reduce
or Map-Collective

(2) Classic
MapReduce

Input

map

reduce

Input

map

reduce

Iterations
Input

Output

map

Local

Graph

times differ in communication style, application abstraction (key-value versus graph) and possible
scheduling/load-balancing. HPC with MPI suggests that one could integrate 10.3 and 10.4 into a single
environment and this approach is illustrated by the Harp plug-in to Hadoop which supports both models.

4.2 Comparison between Data Intensive and Simulation Problems

We can use the Ogre facet analysis and the data analytics architectures to compare data intensive and
simulation applications. There are some clear similarities with looking back at table 6, “Pleasingly
parallel” (10.1), BSP and SPMD common in both arenas. However the Classic MapReduce architecture
(10.2) is a major big data paradigm but much less common in simulations with one example between the
execution of multiple simulations (as in Quantum Monte Carlo) followed by a reduce operation to collect
the results of different simulations. The Iterative Map-Collective architecture (10.3) is common in much
Big Data analytics as in clustering where there is no local graph structure and the parallel algorithms
involve large scale collectives but no point to point communication. The same structure is seen in N-body
(long range force) or other “all-pairs” simulations without the locality typical from discretizing
differential operators.

Many simulation problems have the Map-Communication (10.4) architecture with many smallish point-
to-point messages coming from local interactions between points defining system to be simulated. The
importance of sparse data structures and algorithms is well understood in simulations and is seen in some
Big Data problems such as PageRank, which calculates the leading eigenvector of the sparse matrix
formed by internet site links. Other Big Data sparse data structures are seen in user-item ratings and bags
of words problem. Most items are rated by few users and many documents contain a small fraction of the
word vocabulary. However important data analytics involve full matrix algorithms and for example recent
papers [26, 27] on a new Multi-Dimensional Scaling method use conjugate gradient solvers with full
matrices as opposed to the new sparse conjugate gradient benchmark HPCG being developed for
supercomputer (Top500) evaluations [28].

Note that there are similarities between some Big Data graph problems and particle simulations with an
unusual potential defined by the graph node connectivity. Both use the Map-Communication architecture
and the links in a Big Data graph are equivalent to strength of force between the graph nodes considered
as particles. In this analogy, many Big Data problems are “long range force” corresponding to a graph
where all nodes are linked to each other. As in simulation case, these O(N2) problems are typically very
compute intense but straightforward to parallelize efficiently. It is interesting to consider the analogue of
the “fast multipole” methods for the fully connected Big Data problems which can dramatically improve
the performance to O(N) or O(NlogN) as discussed in Sec. 3.3. Finally note the network connections
used in deep learning are sparse but in recent image interpretation studies [29], the network weights are
block sparse (corresponding to links to pixel blocks) and can be formulated as full matrix operations with
GPUs and MPI running efficiently with these blocks.

The final architecture 10.5 (Shared Memory) is important in some applications but not heavily used in
either simulations or Big Data although large memory systems are used extensively in gene assembly
applications.

The above discussion focuses on a qualitative comparison of Big Data applications with traditional
simulation (HPC) applications viz., comparing the structure. As can be seen there are similarities as well
as points of distinction. It is likely however, that that there will be significant differences in the
“computational feature” facet of the two application classes, viz., the distribution of the values of different

ratios (e.g., ratio of computing to I/O, ratio of memory to I/O etc.) characterizing the computational
feature will be different. We will investigate both quantitative and qualitative differences in future work.

4.3 A Big Data Software Environment

Table11: Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies
Cross-Cutting
Functionalities

Message Protocols:
Thrift, Protobuf
Distributed
Coordination:
Zookeeper, JGroups
Security &
Privacy:
InCommon,
OpenStack
Keystone, LDAP
Monitoring:
Ambari, Ganglia,
Nagios, Inca

Workflow-Orchestration: Oozie, ODE, Airavata, OODT (Tools), Pegasus,
Kepler, Swift, Taverna, Trident, ActiveBPEL, BioKepler, Galaxy, IPython
Application and Analytics: Mahout , MLlib , MLbase, CompLearn, R,
Bioconductor, ImageJ, Scalapack, PetSc
High level Programming: Hive, HCatalog, Pig, Shark, MRQL, Impala, Sawzall,
Drill
Basic Programming model and runtime, SPMD, Streaming, MapReduce,
MPI: Hadoop, Spark, Twister, Stratosphere, Tez, Hama, Storm, S4, Samza,
Giraph, Pregel, Pegasus
Inter process communication Collectives, point-to-point, publish-subscribe:
Hadoop, Spark, Harp, MPI, Netty, ZeroMQ, ActiveMQ, QPid, Kafka, Kestrel
In-memory databases/caches: GORA (general object from NoSQL),
Memcached, Redis (key value), Hazelcast, Ehcache
Object-relational mapping: Hibernate, OpenJPA and JDBC Standard
Extraction Tools: UIMA, Tika
SQL: Oracle, MySQL, Phoenix, SciDB
NoSQL: HBase, Accumulo, Cassandra, Solandra, MongoDB, CouchDB, Lucene,
Solr, Berkeley DB, Azure Table, Dynamo, Riak, Voldemort. Neo4J, Yarcdata,
Jena, Sesame, AllegroGraph, RYA
File management: iRODS
Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP)
Cluster Resource Management: Mesos, Yarn, Helix, Llama, Condor, SGE,
OpenPBS, Moab, Slurm, Torque
File systems: Swift, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Interoperability: Whirr, JClouds, OCCI, CDMI
DevOps: Docker, Puppet, Chef, Ansible, Boto, Libcloud, Cobbler, CloudMesh
IaaS Management from HPC to hypervisors: OpenStack, OpenNebula,
Eucalyptus, CloudStack, vCloud, Amazon, Azure, Google

We have described elsewhere [30-32] how we propose to implement Big Data applications exploiting the
HPBDS architecture sketched in Table 11 [33]. This combines the best practice commercial Big Data
software with an emphasis on Apache projects with HPC subsystems. Table 11 illustrates by green
shading those layers where HPC adds significant value to the Apache stack ABDS. Note that high
performance communication is known to be critical for simulations but it is also essential for many
science big data applications. Commercial applications have large “search” (10.2) components
corresponding to the huge number of users accessing commercial Big Data systems. In science, this step
is necessary – especially for good data management – but is a much lower fraction of system use as the
number of scientists accessing data is much lower than number of users of commercial Big Data.

5 Discussion and Conclusion

This is only an initial discussion about our objectives, scope and methodology, and is by no means a
complete or comprehensive body of work. It is motivated by the fact that there are several existing efforts
at describing and highlighting Big Data applications, yet many are domain or usage specific. We move
beyond any specific set of applications, and focus on Big Data applications and analytics kernels Ogres

that are generally considered to be of relevance/importance to science and engineering using a context
that includes a limited set of commercial problems. Using this broad range of Big Data applications as our
working set, this paper is an attempt at distilling the Big Data properties (facets) and organizing the
plethora of disparate Big Data applications using these properties. Although we validate using analytics
kernels, this classification / organization will in turn shed light on and help provide better understanding
of both the structure of S&E Big Data applications, as well as determinants of their performance. In
Section 4, we show how a deeper appreciation of the Ogre facets will help design and implement better
hardware and software systems.

Appendix 71 NIST Use Cases

The 71 NIST Use Cases with number in each broad area
Government Operation(4): National Archives and Records Administration, Census Bureau
Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search, Digital
Materials, Cargo shipping (as in UPS)
Defense(3): Sensors, Image surveillance, Situation Assessment
Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis, Pathology,
Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity
Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, Crowd
Sourcing, Network Science, NIST benchmark datasets
The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light source
experiments
Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large Hadron Collider
at CERN, Belle Accelerator II in Japan
Earth, Environmental and Polar Science(10): Radar Scattering in Atmosphere, Earthquake, Ocean,
Earth Observation, Ice sheet Radar scattering, Earth radar mapping, Climate simulation datasets,
Atmospheric turbulence identification, Subsurface Biogeochemistry (microbes to watersheds),
AmeriFlux and FLUXNET gas sensors
Energy(1): Smart grid
Enterprise Data Systems(10): Multiple users performing interactive queries and updates on a
database with basic availability and eventual consistency (BASE); Perform real time analytics on data
source streams and notify users when specified events occur; Move data from external data sources into
a highly horizontally scalable data store, transform it using highly horizontally scalable processing (e.g.
Map-Reduce), and return it to the horizontally scalable data store (ELT); Perform batch analytics on
the data in a highly horizontally scalable data store using highly horizontally scalable processing (e.g
MapReduce) with a user-friendly interface (e.g. SQL like); Perform interactive analytics on data in
analytics-optimized database; Visualize data extracted from horizontally scalable Big Data store; Move
data from a highly horizontally scalable data store into a traditional Enterprise Data Warehouse;
Extract, process, and move data from data stores to archives; Combine data from Cloud databases and
on premise data stores for analytics, data mining, and/or machine learning; Orchestrate multiple
sequential and parallel data transformations and/or analytic processing using a workflow manager
Security & Privacy(10): Consumer Digital Media Usage; Nielsen Homescan; Web Traffic Analytics;
Health Information Exchange; Personal Genetic Privacy; Pharma Clinic Trial Data Sharing; Cyber-
security; Aviation Industry; Military - Unmanned Vehicle sensor data; Education - “Common Core”
Student Performance Reporting

References

1. NIST. Big Data Initiative Reports from V1. 2013 [accessed 2014 March 26]; Report at
http://bigdatawg.nist.gov/V1_output_docs.php Available from: http://bigdatawg.nist.gov/home.php.

http://bigdatawg.nist.gov/V1_output_docs.php
http://bigdatawg.nist.gov/home.php

2. Shantenu Jha, Neil Chue Hong, Simon Dobson, Daniel S. Katz, Andre Luckow, Omer Rana, and Yogesh
Simmhan, Introducing Distributed Dynamic Data-intensive (D3) Science: Understanding Applications and
Infrastructure. 2014. https://dl.dropboxusercontent.com/u/52814242/3dpas-draft.v0.1.pdf.

3. S. Jha, M. Cole, D. Katz, O. Rana, M. Parashar, and J. Weissman, Distributed Computing Practice for
Large-Scale Science & Engineering Applications. Concurrency and Computation: Practice and Experience,
2013. 25(11): p. 1559-1585. DOI:http://dx.doi.org/10.1002/cpe.2897

4. R open source statistical library. [accessed 2012 December 8]; Available from: http://www.r-project.org/.
5. Apache Mahout Scalable machine learning and data mining [accessed 2012 August 22]; Available from:

http://mahout.apache.org/.
6. Machine Learning Library (MLlib). [accessed 2014 April 1]; Available from:

http://spark.apache.org/docs/0.9.0/mllib-guide.html.
7. NIST, NIST Big Data Public Working Group (NBD-PWG) Use Cases and Requirements. 2013.

http://bigdatawg.nist.gov/usecases.php
8. Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics, Board on

Mathematical Sciences and Their Applications, and Division on Engineering and Physical Sciences,
Frontiers in Massive Data Analysis. 2013: The National Academies Press,.
http://www.nap.edu/catalog.php?record_id=18374

9. Berry, M., D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh, E. Clementi, S.
Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F.
Seidl, O. Johnson, R. Goodrum, and J. Martin, The Perfect Club Benchmarks: Effective Performance
Evaluation of Supercomputers. International Journal of High Performance Computing Applications,
September 1, 1989, 1989. 3(3): p. 5-40. DOI:10.1177/109434208900300302.
http://hpc.sagepub.com/content/3/3/5.abstract

10. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. 1991 [accessed 2014 March 28];
Available from: https://www.nas.nasa.gov/publications/npb.html.

11. Rob F. Van der Wijngaart, Srinivas Sridharan, and Victor W. Lee, Extending the BT NAS parallel
benchmark to exascale computing, in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 2012, IEEE Computer Society Press. Salt Lake City, Utah.
pages. 1-9.

12. PARKBENCH (PARallel Kernels and BENCHmarks). 1996 [accessed 2014 July 19]; Available from:
http://www.netlib.org/parkbench/.

13. Jack Dongarra, Erich Strohmaier, and Michael Resch. Top 500 Supercomputer Sites. 2014 [accessed 2014
July 19]; Available from: http://www.top500.org/.

14. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-Memory Computers. 2008 September 10 [accessed 2014
July 19,]; Available from: http://www.netlib.org/benchmark/hpl/.

15. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. 1994, Philadelphia, PA: SIAM. http://www.netlib.org/linalg/html_templates/Templates.html

16. Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill, Patterns for Parallel Programming.
2013: Addison-Wesley Professional. ISBN:0321940784

17. Asanovic, K., R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.
Plishker, J. Shalf, S.W. Williams, and K.A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. 2006 December 18 [accessed 2009 December]; Available from:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

18. P. Ram, D. Lee, W. March, and A.G. Gray. Linear-time algorithms for pairwise statistical problems. in
Advances in Neural Information Processing Systems. NIPS 2009. Vancouver, BC.

19. Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan, Saliya
Ekanayake, Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and Haixu Tang, Data Intensive
Computing for Bioinformatics, Chapter in Data Intensive Distributed Computing, Tevik Kosar, Editor.
2011, IGI Publishers.
http://grids.ucs.indiana.edu/ptliupages/publications/DataIntensiveComputing_BookChapter.pdf.

20. Om Malik. Internet of things will have 24 billion devices by 2020 from GSMA, the global mobile industry
trade group. 2011 [accessed 2014 July 19]; Available from: http://gigaom.com/2011/10/13/internet-of-
things-will-have-24-billion-devices-by-2020/.

http://dx.doi.org/10.1002/cpe.2897
http://www.r-project.org/
http://mahout.apache.org/
http://spark.apache.org/docs/0.9.0/mllib-guide.html
http://bigdatawg.nist.gov/usecases.php
http://www.nap.edu/catalog.php?record_id=18374
http://hpc.sagepub.com/content/3/3/5.abstract
http://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/parkbench/
http://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/linalg/html_templates/Templates.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://grids.ucs.indiana.edu/ptliupages/publications/DataIntensiveComputing_BookChapter.pdf
http://gigaom.com/2011/10/13/internet-of-things-will-have-24-billion-devices-by-2020/
http://gigaom.com/2011/10/13/internet-of-things-will-have-24-billion-devices-by-2020/

21. Cisco. Visual Networking Index: Forecast and Methodology, 2012–2017. 2013 May 29 [accessed 2013
August 14]; Available from:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-
481360_ns827_Networking_Solutions_White_Paper.html.

22. Cisco Internet Business Solutions Group (IBSG) (Dave Evans). The Internet of Things: How the Next
Evolution of the Internet Is Changing Everything. 2011 April [accessed 2013 August 14]; Available from:
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

23. Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan,
Seung-Hee Bae, and Hui Li, Applicability of DryadLINQ to Scientific Applications. January 30, 2010,
Community Grids Laboratory, Indiana University.
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf.

24. J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A Runtime for iterative
MapReduce, in Proceedings of the First International Workshop on MapReduce and its Applications of
ACM HPDC 2010 conference June 20-25, 2010. 2010, ACM. Chicago, Illinois.
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf.

25. Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes, and Geoffrey Fox, Applying Twister
to Scientific Applications, in CloudCom 2010. November 30-December 3, 2010. IUPUI Conference Center
Indianapolis. http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf.

26. Yang Ruan and Geoffrey Fox, A Robust and Scalable Solution for Interpolative Multidimensional Scaling
with Weighting, in 9th International conference on e-Science. October 22-25, 2013. Beijing. DOI:
http://dx.doi.org/10.1109/eScience.2013.30.

27. Yang Ruan, Geoffrey L. House, Saliya Ekanayake, Ursel Schütte, James D. Bever, Haixu Tang, and
Geoffrey Fox, Integration of Clustering and Multidimensional Scaling to Determine Phylogenetic Trees as
Spherical Phylograms Visualized in 3 Dimensions, in FIRST INTERNATIONAL WORKSHOP ON CLOUD
FOR BIO (C4Bio 2014). May 26-29, 2014. IEEE/ACM CCGrid 2014 Chicago. pages. 26-29.
http://grids.ucs.indiana.edu/ptliupages/publications/PhylogeneticTreeDisplayWithClustering.pdf.

28. Jack Dongarra and Michael A. Heroux. Toward a New Metric for Ranking High Performance Computing
Systems. 2013 June [accessed 2014 July 19,]; SANDIA REPORT SAND2013-4744 (Defines HPCG)
Available from: http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf.

29. Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Andrew Ng. Deep learning with
COTS HPC systems. in Proceedings of the 30th International Conference on Machine Learning (ICML-13)
2013.

30. Wo Chang. ISO/IEC JTC 1 Study Group on Big Data in 1st Big Data Interoperability Framework
Workshop: Building Robust Big Data Ecosystem. March 18-21 2014. SDSC, San Diego CA: NIST.

31. Geoffrey Fox, Judy Qiu, and Shantenu Jha, High Performance High Functionality Big Data Software
Stack, in Big Data and Extreme-scale Computing (BDEC). 2014. Fukuoka, Japan.
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf.

32. Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C. Fox, A Tale of Two Data-
Intensive Approaches: Applications, Architectures and Infrastructure, in 3rd International IEEE Congress
on Big Data Application and Experience Track. June 27- July 2, 2014. Anchorage, Alaska.
http://arxiv.org/abs/1403.1528.

33. HPC-ABDS Kaleidoscope of 120 Apache Big Data Stack and HPC Tecnologies. [accessed 2014 April 8];
Available from: http://hpc-abds.org/kaleidoscope/.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf
http://dx.doi.org/10.1109/eScience.2013.30
http://grids.ucs.indiana.edu/ptliupages/publications/PhylogeneticTreeDisplayWithClustering.pdf
http://www.sandia.gov/%7Emaherou/docs/HPCG-Benchmark.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf
http://arxiv.org/abs/1403.1528
http://hpc-abds.org/kaleidoscope/

