Integrating Remotely Sensed and Ground Observations for Modeling, Analysis, and Decision Support

Andrea Donnellan, Margaret Glasscoe, Jay W. Parker, Robert Granat
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109
818-354-4737
Andrea.Donnellan@jpl.nasa.gov
Margaret.T.Glasscoe@jpl.nasa.gov
Jay.W.Parker@jpl.nasa.gov
Robert.Granat@jpl.nasa.gov

Marlon Pierce, Jun Wang, Geoffrey Fox
Indiana University
2719 East 10th Street
Bloomington IN 47408
marpierc@iu.edu
wang208@indiana.edu
gcf@indiana.edu

Dennis McLeod
University of Southern California
Mail Code 0781, 3651 Trousdale Parkway
Los Angeles, CA 90089
mcleod@usc.edu

John Rundle
Department of Physics, University of California, Davis
One Shields Avenue
Davis, CA, 95616
jbrundle@ucdavis.edu

Lisa Grant Ludwig
University of California, Irvine
Irvine, CA 92697
lgrant@uci.edu

Abstract—Earthquake science and emergency response require integration of many data types and models that cover a broad range of scales in time and space. Timely and efficient earthquake analysis and response require automated processes and a system in which the interfaces between models and applications are established and well defined. Geodetic imaging data provide observations of crustal deformation from which strain accumulation and release associated with earthquakes can be inferred. Data products are growing and tend to be either large in size, on the order of 1 GB per image, or high data rate, such as from 1 Hz GPS solution. As a result, the products can be computationally intensive to manipulate, analyze, or model. Required computing resources can be large, even for a few users, and can spike when new data are made available or when an earthquake occurs. Moving to a cloud computing environment is the natural next extension for some components of QuakeSim as an increasing number of data products and model applications become available to users. An additional consideration is that moving large images consumes a tremendous amount of bandwidth. Storing the data near the model applications improves performance for the user.

Table of Contents

1. INTRODUCTION ..1
2. DATA PRODUCTS ..3
3. MODELING AND ANALYSIS4
4. DECISION SUPPORT5
5. CLOUD COMPUTING ...6
6. SUMMARY ..7
ACKNOWLEDGEMENTS7
REFERENCES ...7
BIOGRAPHIES ...8

1. INTRODUCTION
QuakeSim is a computational environment integrating data and models for understanding earthquake processes. QuakeSim focuses on using remotely sensed geodetic imaging data to study the interseismic part of the earthquake cycle (Figure 1). Geodetic imaging data provide observations of crustal deformation from which strain accumulation and release associated with earthquakes can be inferred. The goal is to understand earthquakes for mitigation and response. Remotely sensed geodetic imaging observations provide information on motions of the surface of the Earth’s crust, expressing the cycle of strain accumulation and release. These data products are fused with geologic and seismicity information in the QuakeSim environment with visualization, modeling, and pattern analysis tools. E-DECIDER is an earthquake response decision support system that also uses remotely sensed observations and some QuakeSim components.
QuakeSim and E-DECIDER are downstream data product consumers that perform forward modeling, inverse modeling, forecasting, event detection, and response on the data products. Both E-DECIDER and QuakeSim rely on processed data products, which are typically velocities and time series from GPS, and ground range changes from Interferometric Synthetic Aperture Radar (InSAR). These and other data products such as seismicity, geologic fault data, or civil infrastructure, are integrated and assimilated into models for understanding, forecasting, and response. As a result of this reliance on data product providers, it is imperative that data specifications, standards, and locations are well understood.

QuakeSim is distributed and heterogeneous because of the many different data products and numerous different applications. Decomposing QuakeSim into its different parts, strategically using cloud resources where necessary, and using other resources as practical result in greater efficiency. In cases where data volumes are large, such as InSAR, it is important to ensure that model applications reside close to the data products to reduce latency from bandwidth limitations. Alternatively, data products can be connected to applications through high bandwidth pathways.

Earthquakes are the result of complex solid Earth processes. Plate tectonics drive motion of the Earth’s crust, accumulating deformation primarily along plate boundaries. Strain stored as elastic energy is released in earthquakes along faults. These processes occur on scales of milliseconds to millions of years, and from microns to global scales. Crustal deformation data products derived from GPS and interferometric synthetic aperture radar (InSAR) observations enable an understanding of the cycle of strain accumulation and release. Geological and seismic data complement the spaceborne observations. Various domain experts study aspects of these processes using experimental, theoretical, modeling, or statistical tools. Over the last decade, in part due to the advent of new computational methods, there has been an increasing focus on mining and integrating the heterogeneous data products into complex models of solid Earth processes.

QuakeSim focuses on the cycle of strain accumulation and release that is well addressed by geodetic imaging data and related model applications. Coseismic offset is the slip that occurs during an earthquake. Postseismic deformation is continued motion that occurs following an earthquake and deviates from the long-term slip rate. Postseismic deformation is usually some combination of afterslip, relaxation, or poroelastic rebound. Interseismic strain accumulation occurs as a result of plate tectonic motion. QuakeSim addresses the size and location of events, coseismic offsets associated with the earthquakes, and the time varying displacements that occur throughout the earthquake cycle. Seismicity and geology yield information on size and location of events. GPS provides position time series. Interferometric synthetic aperture radar from airborne and spaceborne platforms provide images of displacement. All data sources provide information on geometry of faults and time varying slip.

Figure 1. Schematic of earthquake cycle of strain accumulation and release with the long-term tectonic rate removed.
While we use seismicity as a data source for size, location, and mechanism of events, we do not focus on seismic waveforms. Understanding crustal deformation and fault behavior leads to improved forecasting, emergency planning, and disaster response. Analysis of crustal deformation data can be used to indicate the existence of otherwise unknown faults (e.g., Donnellan et al., 1993), particularly when they are not exposed at the surface. Accurate fault models are required for understanding earthquake processes and require the integration of multiple types of data. Identifying, characterizing, modeling and considering the consequences of unknown faults, and improving the models of known faults contributes to seismic risk mitigation.

The goal of QuakeSim is to improve understanding of earthquake processes by integrating remotely sensed geodetic imaging and other data with modeling, simulation, and pattern analysis applications. Model and analysis applications are delivered as standalone offline software packages or online through web services and Science Gateway user interfaces [1]. Data products are available online for browsing, download, and online or offline analysis through a database and services. QuakeSim utilizes data products that have typically been generated elsewhere; raw data is not ingested or processed but higher level data products from other data providers are made available through Open Geospatial Consortium (OGC)-compliant web services (Donnellan, et al., 2012, Wang, et al., 2012).

2. Data Products

QuakeSim applications use multiple data products from multiple providers (Figure 2). Data products include faults, GPS position time series and velocities, Radar repeat pass interferometry (RPI) or Interferometric Synthetic Aperture Radar (InSAR) ground range change images, and seismicity. It is important that the data products come from trusted sources and are reliable in order to construct valid models of earthquake processes and produce accurate earthquake probabilities. Understanding the history of the data products and how they were produced allows a user to make informed decisions and interpretations. It is also important to ensuring reproducibility of results. Tracking data provenance is necessary, particularly when data are reprocessed or originate from a variety of solutions, such as with GPS data.

Figure 2. QuakeSim inputs, outputs, and feedback to data providers are shown. Multiple data products are used from numerous providers. These are used in applications for understanding faults and forecasting earthquake likelihood. At times output from the applications identifies issues with the data products, which can be in the form of previously unrecognized faults, unmodeled error sources, or processing issues.
The requirements for QuakeSim as a data product consumer and upstream users of QuakeSim results are the same. Standards and services are necessary for efficient consumption and analysis of products. Data product customers specifically need: 1) Standard data formats like GeoTIFF (UAVSAR), GeoJSON, etc.; 2) Better metadata, such as how the data product was explicitly created (particularly for GPS, in our experience); 3) No undocumented, post-publication changes; 4) Delivery of data via standard mechanisms, e.g., OGC services; 5) Cloud-based delivery of data sets, such as with Amazon S3 and Elastic Block Store services; and 6) Notification services for new products and changes. Web Services are key to effectively supporting downstream users; these should not be entangled with Web and desktop clients. Effective utilization of data products and analysis results by emergency responders require standard interfaces and products that are easily and readily interpretable.

A key issue for earthquake response efforts is data availability and reliability, especially in the first hours to days following the event. Responders and decision makers require access to rapid fault solutions, deformation and displacement information, and geologic and geodetic data quickly and easily. Available and trusted data products in times of crisis are essential in the decision making process. Quick-look products that may not be as accurate are of more value than accurate products with a long latency.

3. Modeling and Analysis

Data products are used in four main ways by QuakeSim modeling and analysis tools. The goal is to identify active faults or regions, understand earthquake fault behavior, search for anomalies, and estimate earthquake likelihood.

QuakeSim provides integrated map-based interfaces and applications for 1) accessing remotely-sensed and ground-based data products; 2) exploring and analyzing observations; 3) modeling earthquake processes; and 4) conducting pattern analysis to focus attention and identify significant and/or subtle features in the data. Data products and model tools can be accessed by network service (Web Services and REST) interfaces, directly through web-based user interfaces, or run offline on local or high-performance computers.

Figure 3. Simplified E-DECIDER workflow where inputs, outputs, and delivery mechanisms are shown. Input data in the form of remote sensing imagery or simulation results generate derived decision support products that are then delivered as OGC-compliant products through the DHS UICDS software and the E-DECIDER interfaces.
Cloud computing is applicable in cases where multiple runs can be made in an embarrassingly parallel fashion. This includes analysis of high rate GPS time series analysis, during post event response, when numerous users might be using the QuakeSim environment, and for simulating earthquakes or inverting crustal deformation observations in which numerous runs are carried out with different initial conditions.

4. Decision Support

QuakeSim tools and Web services are used as a back end for E-DECIDER. E-DECIDER provides decision support for earthquake disaster management and response utilizing NASA and other available remote sensing data and QuakeSim modeling software (Figure 3). E-DECIDER delivers a web-based infrastructure and mobile interface designed for ease-of-use by decision makers, including rapid and readily accessible satellite imagery and synthetic interferograms following earthquakes; standards-compliant map data products; and deformation modeling and earthquake aftershock forecasting results [2]. The decision support tools are developed working in partnership with end users in first response and disaster management agencies, such as the US Geological Survey (USGS), California Geological Survey (CGS), and the Department of Homeland Security (DHS). A recent addition to the suite of tools includes delivery of E-DECIDER information through the DHS Unified Incident Command and Decision Support (UICDS) software, which allows data providers a means to communicate and send their products in a standard manner in the event of a disaster.

An example workflow includes an end-to-end process that starts with the triggering of a deformation simulation from a >M5 earthquake from the USGS feed and ends with those results posted to an RSS feed. We have developed algorithms and web services to automatically process output from the Disloc model to produce tilt and deformation gradient information using a Sobel operator. The tilt is a measurement of the change of slope that can affect water distribution, drainage, and sewage services. The deformation gradient is a measure of the rate of change of deformation and can detect locations of possible fault rupture on the surface as well as locations where
problems

Cloud Computing an excellent candidate for “big data” computing capacity but
Cloud Computing provides much potential greater
Compared to traditional high performance computing,
corresponding to different QuakeSim tools or to individual services
Examples are seen in the individual services corresponding
complexities (such as those exposed in
Can be used to build applications while hiding underlying
Engine
Framework
Eucalyptus.
Examples are
in ArcGIS are
automatically via UICDS to responders (in locations where
UICDS is in use). The JPL UICDS core has been installed
and is operational and has been tested in a response exercise
to push E-DECIDER products to end users in an operational
environment during the ShakeOut in mid-October 2012.
Future plans to send epicenter and potentially exposed
infrastructure from Hazards-United States (HAZUS)
databases from the E-DECIDER GeoServer directly to
UICDS upon the USGS feed trigger are also underway.

5. CLOUD COMPUTING

Cloud computing in the general sense represents the
centralization of general computing capacity into highly
scalable data centers [3]. The National Institute of Standards
is standardizing cloud computing concepts and terminology,
which we briefly summarize here.

In brief summary, we can think of clouds as consisting of
the following service layers. Infrastructure as a Service:
through Virtual Machine technologies, clouds provide
access to hosted servers and resources that appear to the
user as “just another server.” The advantage from the user’s
point of view is that the resources are elastic and can be
scaled up or down as needed. Amazon, Azure and Google
Compute Engine are examples. Open source examples
include OpenStack, OpenNebula, CloudStack, Nimbus, and
Eucalyptus. Platform as a Service: This allows the user to
deploy user-created applications within a specific cloud
framework into the cloud for use by others. Google App
Engine and Amazon’s Elastic MapReduce [4] are prominent
eamples. Here the cloud provider creates a framework that
can be used to build applications while hiding underlying
complexities (such as those exposed in Infrastructure as a
Service). Software as a Service: The cloud provider
provides a specific capability or software to the user.
Examples are seen in the individual services corresponding
to different QuakeSim tools or to individual services
corresponding to different forecasting models.

Compared to traditional high performance computing,
Cloud Computing provides much potential greater
computing capacity but with larger latencies. This makes
Cloud Computing an excellent candidate for “big data”
problems in which the same operations need to be
performed on very large data sets, but little communication
between individual processes or movement of data is
needed. Further, even in problems needing communication,
these are not small messages familiar from parallel
simulations but rather large “reductions” (such as global
sums or broadcasts) supported by MapReduce and its
iterative extensions in the cloud [4-7].

A growing body of research indicates that Cloud computing
approaches are a good match for many large-scale
centric scientific computing problems [8-13]. Cloud
computing infrastructure in many fields is overtaking the
traditional data center. The size of data in many fields (such
as the life sciences) is growing so rapidly that frequent data
movement is impractical, and so computing must be brought
to the data. This is likely the case for InSAR geodetic
imaging data, as volumes grow over time. High rate GPS
data products also are a good candidate for analysis on the
cloud. Other applications may be impractical for cloud
computing, and analysis should be done to gain efficiency
with cloud computing while not incurring expense where
unnecessary.

It is important to prototype these approaches for NASA data
collections, particularly the anticipated large collections of
InSAR imagery from the DESDynl-R mission. QuakeSim’s
QuakeTables database houses some processed InSAR data
products and also the complete set of processed repeat pass
interferometry products from the airborne UAVSAR InSAR
project. These data provide essential information for
modeling earthquake processes and particularly for
developing accurate fault models. We are collaborating with
data product providers to ensure standard interfaces formats
as well as jointly used cloud infrastructure where
appropriate. The infrastructure must be flexible enough to
support other data sets and use cases.

Under the present cloud models storage at existing data
center appears more cost effective than storage on the cloud
where recurring costs are at present cost prohibitive.
However, this may change in the future. Microsoft Azure’s
Blob storage service, Amazon’s S3, and the Lustre file
system-based Whamcloud are examples of unstructured
storage, and BigTable, HBase, and the Azure Table Service
are examples of structured data storage. We will evaluate
these for the storage and access of large collections of
individually large data sets. A key observation from our
research on cloud systems for science is that data storage
and computing must be coupled. We must therefore couple
our IaaS prototyping with SaaS prototyping. Specifically,
the SaaS models that we will consider are MapReduce and
its derivatives. MapReduce-style approaches are
particularly useful for data-parallel computing problems
such as DESDynl-R image processing and GPS signal
analysis. Simulations and inversions where similar runs are
done with different initial conditions are also candidates for
cloud computing.
We are exploring use of Amazon Cloud and Indiana University’s FutureGrid system. FutureGrid is an NSF-funded testbed that is designed to foster research on Cloud Computing for science and other advanced topics. We will use FutureGrid to help build and evaluate prototypes. Ultimately, the goal is to package these tools with a workflow engine and gateway.

Generally QuakeSim can be run on cloud services, as from QuakeSim's point of view there is little difference between the VM IaaS and a regular host. A major difference is that hardware can be dynamically acquired, so we can test many different VM sizes to determine what we need to run and under what circumstances (e.g. in the event of an earthquake). We do not have to spend weeks configuring and ordering hardware only to find out it is too small or too big, which can waste time and money. Further, commercial clouds dynamically reallocate resources on the fly to satisfy drastic changes in demand.

6. Summary

Clouds are a promising new method for analysis and modeling of large data product sets and for multiple parallel runs. In some instances it may be better to use standard resources instead of clouds. Careful consideration should be given to what resources to use for various tasks. QuakeSim consists of several components interfacing with many different organizations, data products, and with several different types of applications for modeling and analysis. Collaboration between QuakeSim developers and data product providers and downstream consumers early on will result in improved efficiency across the board for earthquake studies and analysis of geodetic imaging observations.

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, Indiana University, University of Southern California, and University of California’s Davis and Irvine campuses under contract with NASA. The work was sponsored by NASA’s Advanced Information Technologies, Earth Surface and Interior, and Applied Sciences Programs.

References

BIographies

Andrea Donnellan is a principal research scientist at NASA's Jet Propulsion Laboratory, and Adjunct Assistant Professor of Research of Earth Sciences at the University of Southern California. She is Principal Investigator of NASA's QuakeSim project, which was co-winner of NASA's Software of the Year Award in 2012. Donnellan was Deputy Manager of the JPL's Science Division, Pre-Project Scientist of an L-band radar mission, and NASA's Applied Sciences Program Area Co-Lead for Natural Disasters. Donnellan received a B.S. in geology from the Ohio State University in 1986, a master's and Ph.D. in geophysics from Caltech in 1988 and 1991 respectively, and an M.S. in Computer Science from the University of Southern California in 2003. She held a National Research Council postdoctoral fellowship at NASA's Goddard Space Flight Center. Donnellan has conducted field studies globally in tectonically active areas, and on ice sheets and glaciers, and has received numerous awards.

Jay Parker joined the Satellite Geodesy and Geodynamics Systems Group at JPL in 1996, and has been part of the JPL technical staff since 1989. He completed both a master's and PhD in Electrical Engineering from the University of Illinois (Urbana-Champaign), and graduated with a Bachelors of Science from the California Institute of Technology in 1981. His professional interests lie in applications of fast and accurate numerical models to geophysical remote sensing. Past modeling projects include vortex formation in the ionospheric D region, parallel supercomputer modeling of radar scattering and antenna power patterns, and high-fidelity modeling of clear-air infrared spectra for determining climate change and pollution sources. He is currently working on methods to invert SCIGN GPS data to determine earthquake and after-slip fault movements, finite element models of earthquake cycles, and new methods for GPS data processing on supercomputers. Jay has been inducted into Tau Beta Pi, and received a JPL Technology and Applications Programs Group Achievement Award. He is a member of the American Geophysical Union, and the IEEE Antennas and Propagation Society.

Robert Granat is currently Group Supervisor of the Machine Learning and Instrument Autonomy group at JPL, and has been a member of technical staff there since 1996. He received his M.S. and Ph.D. degrees in Electrical Engineering from the University of California, Los Angeles, and his B.S. from the California Institute of Technology. Since 1999, he has been working on QuakeSim and related projects to perform statistical machine learning based health monitoring, signal classification, and anomaly detection on seismic and GPS sensor networks. His other research interests include autonomous robotic navigation, scalable scientific computing, and radiation fault tolerant algorithms for spaceborne computation.

Maggi Glasscoe is a Geophysicist in the Solid Earth Group at the Jet Propulsion Laboratory, California Institute of Technology. Glasscoe received a B.S. in Geological Sciences and a B.A. in Print Journalism from the University of Southern California in 1997 and a M.S. in Geology from the University of California, Davis in 2003. She has experience working with a number of modeling codes, including viscoelastic finite element models (the JPL developed Geophysical Finite Element Simulation Tool, GeoFEST, in particular). Her interests include disaster response, modeling deformation of the Earth’s crust to study postseismic response to large earthquakes, numerical models of the rheological behavior of the lower crust, and simulations of interacting fault systems. She is is a researcher on the QuakeSim project and the Principal Investigator of EDECIDER (Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response).

Marlon Pierce is the Assistant Director for the Science Gateways Group in Research Technologies Applications at Indiana University. Pierce received his Ph.D. Florida State University (Physics) in 1998 in computational condensed matter physics. His current research and development work focuses on computational sciences with an emphasis on Grid computing and computational Web portals. Prior to forming the Science Gateway Group, Pierce served as assistant director for the Community Grids Laboratory at Indiana University's Pervasive Technologies Institute. Pierce supervises the research activities of software engineering staff and Ph.D. students, and serves as principal investigator on multiple federally-funded research projects. Pierce leads research efforts in the following areas: the application of service-oriented architectures and real-time streaming techniques to geographical information systems and sensor networks; the development of open source science Web portal software for accessing Grid computing and data resources; and Grid-based distributed computing applications in computational chemistry and material science, chemical informatics, and geophysics.
Jun Wang is a GIS specialist in the Community Grids Lab, Indiana University. His current research interests are in the areas of large scale spatial data processing and visualization with Cloud computing technology. He joined QuakeSim team in July 2010, and develops the software components for QuakeSim visualization products.

Geoffrey Fox received a Ph.D. in Theoretical Physics from Cambridge University and is now professor of Informatics and Computing, and Physics at Indiana University where he is director of the Digital Science Center and Associate Dean for Research and Graduate Studies at the School of Informatics and Computing. He previously held positions at Caltech, Syracuse University and Florida State University. He has supervised the PhD of 62 students and published over 600 papers in physics and computer science. He currently works in applying computer science to Bioinformatics, Defense, Earthquake and Ice-sheet Science, Particle Physics and Chemical Informatics. He is principal investigator of FutureGrid – a facility to enable development of new approaches to computing. He is involved in several projects to enhance the capabilities of Minority Serving Institutions.

Dennis McLeod is currently Professor of Computer Science at the University of Southern California, and Director of the Semantic Information Research Laboratory. He received his Ph.D., M.S., and B.S. degrees in Computer Science and Electrical Engineering from MIT. Dr. McLeod has published widely in the areas of data and knowledge base systems, federated databases, database models and design, ontologies, knowledge discovery, scientific data management, information trust and privacy, and multimedia information management. His current research focuses on: structured domain ontologies; semantic web; database semantic heterogeneity resolution and inter-database correlation; personalized information management and customization; information management environments for Earth, marine, and climate science; the architecture of data centers providing massive storage via virtualization and data clouds; social networking information management and information trust; and service-based information access and delivery frameworks.

John Rundle is an Interdisciplinary Professor of Physics, Civil Engineering and Geology at University of California, Davis. His research is focused on understanding the dynamics of earthquakes through numerical simulations; pattern analysis of complex systems; dynamics of driven nonlinear Earth systems; and adaptation in general complex systems. Computational science and engineering is an emerging method of discovery in science and engineering that is distinct from, and complementary to, the two more traditional methods of experiment/observation and theory. The emphasis in this method is upon using the computer as a numerical laboratory to perform computational simulations to gain insight into the behavior of complex dynamical systems, to visualize complex and voluminous data sets, to perform data mining to discover hidden information within large data sets, and to assimilate data into computational simulations. Professor Rundle is a Fellow of the American Geophysical Union.

Lisa Grant Ludwig is an Associate Professor in Public Health at the University of California, Irvine. She was Associate Director of the California Institute for Hazards Research. Lisa earned a Ph.D. from Caltech in 1993 in Geology with Geophysics, M.S. degrees from Caltech in 1989 in Geology and 1987 in Environmental Engineering and Science, and a B.S. from Stanford in 1985 in Applied Environmental Earth Sciences. Lisa's research interests include natural hazards, paleoseismology, active faults, San Andreas fault, southern California faults, San Joaquin Hills, seismic hazard, environmental health and geology. Her research group addresses natural hazards and disasters from a geologic perspective, with emphasis on earthquakes. Earthquakes are a major threat to public health globally and locally in California. The group focuses on defining the potential for large earthquakes, and working collaboratively on developing forecasts, hazard models and effective responses. Results of the work are applied for disaster preparedness planning, structural design, land-use planning, seismic risk assessment and public education about earthquake hazard.