
Twister4Azure: Data Analytics in the Cloud
Thilina Gunarathne, Xiaoming Gao and Judy Qiu, Indiana University

Genome-scale data provided by next generation sequencing (NGS) has made it possible to identify new species
and infer the evolutionary relationships between organisms. These techniques have been applied in medicine,
such as to screen for recurrent mutations in cancer for use as biomarkers, to classify diseases and suggest
treatment. However, developing a complete understanding of a genomic dataset relies heavily on a set of data
analytics tools that are tractable to analyze potentially billions of read sequences, where the challenges are both
unprecedented at scale and in complexity. Researchers of Informatics and Computing, Biology and Medicine at
Indiana University have worked together on a NIH project to investigate emerging scalable computing systems
interoperable of Cloud and HPC that meet the common needs across a series of life sciences problems [1]. This
effort is exemplified by our bioinformatics pipeline of data storage, analysis, and visualization [2]. At its core,
parallel programming paradigms such as Mapreduce and MPI provide powerful large-scale data processing
capabilities. Our research is to clarify which applications are best suited for Clouds; which require HPC and
which can use both effectively. The long-term goal is enabling cost effective and readily available analysis tool
repository that removes the barrier of research in broader community -- making data analytics in the Cloud a
reality.

Integrating Scientific Challenge: A Typical Bioinformatics Pipeline
The study of microbial genomes is complicated by the fact that only small number of species can be isolated
successfully and the current way forward is metagenomic studies of culture-independent, collective sets of
genomes in their natural environments. This requires identification of as many as millions of genes and
thousands of species from individual samples. New sequencing technology can provide the required data
samples with a throughput of 1 trillion base pairs per day and this rate will increase. A typical observation and
data pipeline is shown in Fig. 1 with sequencers producing DNA samples that are assembled and subject to
further analysis including BLAST-like comparison with existing datasets as well as clustering, dimension
reduction and visualization to identify new gene families. The initial parts of the pipeline fit the Mapreduce (e.g.
Hadoop) or many-task Cloud (e.g. Azure) model but the latter stages involve parallel linear algebra for the data
mining (e.g. MPI or Twister). It is highly desirable to simplify the construction of distributed sequence analysis
pipelines with a unified programming model, which motivated us to design and implement Azure4Twister.
Twister and Twister4Azure interpolate between MPI and Mapreduce and, suitably configured, can mimic their
characteristics, and, more interestingly, can be positioned as a programming model that has the performance of
MPI and the fault tolerance and dynamic flexibility of the original Mapreduce.

Figure 1 A Pipeline for Metagenomics Data Analysis

Technologies & Applications
Our applications can be classified into three main categories based on their execution pattern, namely
pleasingly parallel computations, Mapreduce computations and iterative Mapreduce computations.
Twister4Azure [3] distributed decentralized iterative Mapreduce runtime for Windows Azure Cloud, which is the
successor to MRRoles4Azure [4] Mapreduce framework and the Classic Cloud pleasingly parallel framework [5],
was used as the distributed cloud data processing framework for our scientific computations. Twister4Azure
extends the familiar, easy-to-use Mapreduce programming model with iterative extensions, enabling a wide
array of large scale iterative as well as non-iterative data analysis and scientific applications to utilize Azure
platform easily and efficiently in a fault-tolerant manner, supporting all three categories of applications.

Figure 2 MRRoles4Azure Architecture Figure 1 Twister4Azure programming model
Twister4Azure utilize the eventually-consistent, high-latency Azure cloud services effectively to deliver
performance comparable to (non-iterative) and outperforming (for iterative computing) traditional Mapreduce
runtimes. Twister4Azure supports multi-level caching of data across iterations as well as among workers running
on the same compute instance and utilizes a novel hybrid task scheduling mechanism to perform cache aware
scheduling with minimal overhead. Twister4Azure also supports data broadcasting, collective communication
primitives as well as the invoking of multiple MapRedue applications inside an iteration.

Pleasingly parallel Computations
We performed Cap3 sequence assembly (Fig. 4), BLAST+ sequence search and dimension reduction
interpolation computations on Azure using this framework. The performance and scalability are comparable to
traditional Mapreduce run times [3]. For Cap3, we assembled up to 4096 FASTA files (each containing 458 reads)
in less than one hour using 128 Azure small instances with a cost of around 16$. With BLAST+, the execution of
76800 queries using 16 Azure large instances was less than one hour with a cost of around 12$.

Mapreduce Type Computations
We performed SmithWatermann-GOTOH (SWG) pairwise sequence alignment computations on Azure [3][4]
with performance and scalability comparable to the traditional Mapreduce frameworks running on traditional
clusters (Fig. 5). We were able to perform up to 123 million sequence alignments using 192 Azure small
instances with a cost of around 25$, which was less than the cost it took to run the same computation using
Amazon ElasticMapReduce.

Iterative Mapreduce Type Computations
The third and most important category of computation is the iterative Mapreduce type applications. These
include majority of data mining, machine learning, dimension reduction, clustering and many more applications.
We performed KMeans Clustering (Fig. 6) and Multi-Dimensional Scaling (MDS) (Fig. 7) scientific iterative
Mapreduce computations on Azure cloud. MDS consists of two Mapreduce computations (BCCalc and
StressCalc) per iteration and contains parallel linear algebra computations as its core.

Figure 4 Cap3 Sequence Assembly on 128
instances/cores

Figure 5 SWG Pairwise Distance Calculation
Performance

Figure 6 KMeans Clustering Performance

Figure 7 MDS Performance Figure 8 Average Weekday vs. Weekend
Transmission Speeds

Figure 9 Average Upload vs. Download Speed

Blob storage data transmission performance
We conducted performance tests on the data transmission speed of the Windows Azure Blob service. The tests
were done on a virtual machine hosted by the Windows Azure cloud, so the data transmission measured was
intra-cloud traffic. Aspects tested include: data transmission speed for objects of different sizes; download vs.
upload speed; weekday performance vs. weekend performance, etc. We illustrate our analysis in Fig. 8 and Fig.
9 and summarize three conclusions below.

1. Both upload and download performance fluctuate, but download speed is generally faster than upload,
suggesting Azure Blob may be a better option for storing input than saving output. Namely, Azure Blob is not
suitable for those scientific applications that generate a huge amount of output.

2. Download speed is generally faster for files of hundreds of MB than for those of tens of MB. So packing
scientific input data into larger files may help improve the data transmission efficiency.

3. The top download speed could be high (60+MB/s), but real-time speed fluctuates a lot. Keeping the
computation jobs close to where the Azure data blobs will be important for scheduling scientific jobs in
Azure.

Some Lessons Learned
The overall major challenge for this research is building a system capable of handling the incredible increases in
dataset sizes while solving the technical challenges of portability with scaling performance and fault tolerance
using an attractive powerful programming model. Further, these challenges must be met for both computation
and storage. Cloud enables persistent storage like Azure Blob. Mapreduce leverages the possibility of collocating
data and compute and provides more flexibility to bring data to compute, bring data close to compute or bring
compute to data. In concert with virtualization technology, data center model like Azure Cloud is well suited for
hosting data analysis for bioinformatics applications as services on demand. Below we give specific comments
on Azure.

Azure Programming Model Issues
1. Intermittent performance inconsistency of Azure instances when executing long running memory intensive

applications.
• Fig. 10 shows a sample histogram of computational tasks in a MDS iterative computation. Adjacent blue

& red areas represent a single iteration. In ideal conditions, the time taken for tasks in an iteration should
be nearly identical across the iteration except for the first iteration. However, after several iterations we
started to notice that some tasks randomly take much longer to finish. This result in slowing down of the
whole iteration and cause degradation of the computation efficiency as we can see in Fig. 7. We are still
investigating the cause for this anomaly and we suspect it to be a behavior of Azure instances after
stressing the instance memory for a certain time.

Figure 10 MDS Task Execution Time Histogram for 20 iterations

2. Deployment issues
• Changing the number of roles in a “running” deployment results in a non-responding deployment. This

happened to us several times in the past and lately we avoid this by stopping the deployment before
changing the number of roles.

• Deployment unreliability. Some roles never come to running state or take a very long time to start. This
became a major issue for us when running the performance benchmarks. For an example, typically we
had to start 132 or more roles to get 128 working roles.

3. API issues
• More user friendly error messages for the service requests. Most of the error messages we get from Azure

services are generic “invalid request” messages, which do not provide information about what really went
wrong in the request. This leads to lot of wasted time with trial and error type of development.

• Better coherent documentation

0
5

10
15
20
25
30

0
64

0
12

80
19

20
25

60
32

00
38

40
44

80
51

20
57

60
64

00
70

40
76

80
83

20
89

60
96

00
10

24
0

10
88

0
11

52
0

12
16

0
12

80
0

13
44

0
14

08
0

14
72

0
15

36
0

16
00

0
16

64
0

17
28

0
17

92
0

18
56

0
19

20
0

19
84

0

Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(s
)

Map Task ID

BCCalc

StressCalc

4. Feature requests
• Visibility time limit change support for queue messages. This would allow us to support much richer fault

tolerance patterns. Amazon SQS supports this through ChangeMessageVisiblity operation.
• Server-side Count or Sum operation for table entries. It’s very inefficient to download all the entries in a

table to perform a simple sum or a count operation for a single table field.

Acknowledgements
This work was made possible using the computing usage grant provided by Microsoft Azure Cloud. The work
reported in this document is partially funded by NIH Grant number RC2HG005806-02. We would also like to
appreciate SALSA group for their support.

References
[1] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Hui Li, Bingjing Zhang, Yang

Ryan, Saliya Ekanayake, Tak-Lon Wu, Adam Hughes, Geoffrey Fox Hybrid Cloud and Cluster Computing
Paradigms for Life Science Applications, Journal of BMC Bioinformatics. Open Conferences System BOSC
Proceedings (BOSC 2010), VOL.11(Suppl 12): p.S3, August 18, 2010.

[2] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan, Saliya
Ekanayake, Stephen Wu, Geoffrey Fox, Mina Rho, Haixu Tang, Data Intensive Computing for
Bioinformatics, a book chapter of Data Intensive Distributed Computing, ISBN13:978-1-61520-971-2, IGI
Publishers, 2012.

[3] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, "Portable Parallel Programming on Cloud and HPC: Scientific
Applications of Twister4Azure," presented at the Portable Parallel Programming on Cloud and HPC:
Scientific Applications of Twister4Azure, Melbourne, Australia, 2011.

[4] T. Gunarathne, W. Tak-Lon, J. Qiu, and G. Fox, "MapReduce in the Clouds for Science," in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference on, 2010, pp. 565-572.

[5] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, "Cloud computing paradigms for pleasingly parallel
biomedical applications," Concurrency and Computation: Practice and Experience, 2011.

	Twister4Azure: Data Analytics in the Cloud
	Genome-scale data provided by next generation sequencing (NGS) has made it possible to identify new species and infer the evolutionary relationships between organisms. These techniques have been applied in medicine, such as to screen for recurrent mut...
	Integrating Scientific Challenge: A Typical Bioinformatics Pipeline
	Technologies & Applications
	Pleasingly parallel Computations
	Mapreduce Type Computations
	Iterative Mapreduce Type Computations

	Blob storage data transmission performance
	Some Lessons Learned
	Azure Programming Model Issues
	Acknowledgements
	References

