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Genome-scale data provided by next generation sequencing (NGS) has made it possible to identify new species 
and infer the evolutionary relationships between organisms. These techniques have been applied in medicine, 
such as to screen for recurrent mutations in cancer for use as biomarkers, to classify diseases and suggest 
treatment.  However, developing a complete understanding of a genomic dataset relies heavily on a set of data 
analytics tools that are tractable to analyze potentially billions of read sequences, where the challenges are both 
unprecedented at scale and in complexity. Researchers of Informatics and Computing, Biology and Medicine at 
Indiana University have worked together on a NIH project to investigate emerging scalable computing systems 
interoperable of Cloud and HPC that meet the common needs across a series of life sciences problems [1]. This 
effort is exemplified by our bioinformatics pipeline of data storage, analysis, and visualization [2]. At its core, 
parallel programming paradigms such as Mapreduce and MPI provide powerful large-scale data processing 
capabilities. Our research is to clarify which applications are best suited for Clouds; which require HPC and 
which can use both effectively. The long-term goal is enabling cost effective and readily available analysis tool 
repository that removes the barrier of research in broader community -- making data analytics in the Cloud a 
reality.  

Integrating Scientific Challenge: A Typical Bioinformatics Pipeline 
The study of microbial genomes is complicated by the fact that only small number of species can be isolated 
successfully and the current way forward is metagenomic studies of culture-independent, collective sets of 
genomes in their natural environments. This requires identification of as many as millions of genes and 
thousands of species from individual samples. New sequencing technology can provide the required data 
samples with a throughput of 1 trillion base pairs per day and this rate will increase. A typical observation and 
data pipeline is shown in Fig. 1 with sequencers producing DNA samples that are assembled and subject to 
further analysis including BLAST-like comparison with existing datasets as well as clustering, dimension 
reduction and visualization to identify new gene families. The initial parts of the pipeline fit the Mapreduce (e.g. 
Hadoop) or many-task Cloud (e.g. Azure) model but the latter stages involve parallel linear algebra for the data 
mining (e.g. MPI or Twister). It is highly desirable to simplify the construction of distributed sequence analysis 
pipelines with a unified programming model, which motivated us to design and implement Azure4Twister. 
Twister and Twister4Azure interpolate between MPI and Mapreduce and, suitably configured, can mimic their 
characteristics, and, more interestingly, can be positioned as a programming model that has the performance of 
MPI and the fault tolerance and dynamic flexibility of the original Mapreduce. 

 
Figure 1 A Pipeline for Metagenomics Data Analysis 



Technologies & Applications 
Our applications can be classified into three main categories based on their execution pattern, namely 
pleasingly parallel computations, Mapreduce computations and iterative Mapreduce computations. 
Twister4Azure [3] distributed decentralized iterative Mapreduce runtime for Windows Azure Cloud, which is the 
successor to MRRoles4Azure [4] Mapreduce framework and the Classic Cloud pleasingly parallel framework [5], 
was used as the distributed cloud data processing framework for our scientific computations. Twister4Azure 
extends the familiar, easy-to-use Mapreduce programming model with iterative extensions, enabling a wide 
array of large scale iterative as well as non-iterative data analysis and scientific applications to utilize Azure 
platform easily and efficiently in a fault-tolerant manner, supporting all three categories of applications.   

 

 

Figure 2 MRRoles4Azure Architecture Figure 1 Twister4Azure programming model 
Twister4Azure utilize the eventually-consistent, high-latency Azure cloud services effectively to deliver 
performance comparable to (non-iterative) and outperforming (for iterative computing) traditional Mapreduce 
runtimes. Twister4Azure supports multi-level caching of data across iterations as well as among workers running 
on the same compute instance and utilizes a novel hybrid task scheduling mechanism to perform cache aware 
scheduling with minimal overhead. Twister4Azure also supports data broadcasting, collective communication 
primitives as well as the invoking of multiple MapRedue applications inside an iteration.  

Pleasingly parallel Computations  
We performed Cap3 sequence assembly (Fig. 4), BLAST+ sequence search and dimension reduction 
interpolation computations on Azure using this framework. The performance and scalability are comparable to 
traditional Mapreduce run times [3]. For Cap3, we assembled up to 4096 FASTA files (each containing 458 reads) 
in less than one hour using 128 Azure small instances with a cost of around 16$. With BLAST+, the execution of 
76800 queries using 16 Azure large instances was less than one hour with a cost of around 12$.  

Mapreduce Type Computations 
We performed SmithWatermann-GOTOH (SWG) pairwise sequence alignment computations on Azure [3][4] 
with performance and scalability comparable to the traditional Mapreduce frameworks running on traditional 
clusters (Fig. 5). We were able to perform up to 123 million sequence alignments using 192 Azure small 
instances with a cost of around 25$, which was less than the cost it took to run the same computation using 
Amazon ElasticMapReduce. 



Iterative Mapreduce Type Computations 
The third and most important category of computation is the iterative Mapreduce type applications. These 
include majority of data mining, machine learning, dimension reduction, clustering and many more applications. 
We performed KMeans Clustering (Fig. 6) and Multi-Dimensional Scaling (MDS) (Fig. 7) scientific iterative 
Mapreduce computations on Azure cloud. MDS consists of two Mapreduce computations (BCCalc and 
StressCalc) per iteration and contains parallel linear algebra computations as its core.  

   
Figure 4 Cap3 Sequence Assembly on 128 
instances/cores 

Figure 5 SWG Pairwise Distance Calculation 
Performance 

Figure 6 KMeans Clustering Performance  

   

 

Figure 7 MDS Performance Figure 8 Average Weekday vs. Weekend 
Transmission Speeds 

Figure 9 Average Upload vs. Download Speed  

Blob storage data transmission performance 
We conducted performance tests on the data transmission speed of the Windows Azure Blob service. The tests 
were done on a virtual machine hosted by the Windows Azure cloud, so the data transmission measured was 
intra-cloud traffic. Aspects tested include: data transmission speed for objects of different sizes; download vs. 
upload speed; weekday performance vs. weekend performance, etc.  We illustrate our analysis in Fig. 8 and Fig. 
9 and summarize three conclusions below. 

1. Both upload and download performance fluctuate, but download speed is generally faster than upload, 
suggesting Azure Blob may be a better option for storing input than saving output.  Namely, Azure Blob is not 
suitable for those scientific applications that generate a huge amount of output. 

2. Download speed is generally faster for files of hundreds of MB than for those of tens of MB. So packing 
scientific input data into larger files may help improve the data transmission efficiency. 

3. The top download speed could be high (60+MB/s), but real-time speed fluctuates a lot. Keeping the 
computation jobs close to where the Azure data blobs will be important for scheduling scientific jobs in 
Azure. 

 



Some Lessons Learned 
The overall major challenge for this research is building a system capable of handling the incredible increases in 
dataset sizes while solving the technical challenges of portability with scaling performance and fault tolerance 
using an attractive powerful programming model. Further, these challenges must be met for both computation 
and storage. Cloud enables persistent storage like Azure Blob. Mapreduce leverages the possibility of collocating 
data and compute and provides more flexibility to bring data to compute, bring data close to compute or bring 
compute to data. In concert with virtualization technology, data center model like Azure Cloud is well suited for 
hosting data analysis for bioinformatics applications as services on demand. Below we give specific comments 
on Azure. 

Azure Programming Model Issues 
1. Intermittent performance inconsistency of Azure instances when executing long running memory intensive 

applications.  
• Fig. 10 shows a sample histogram of computational tasks in a MDS iterative computation.  Adjacent blue 

& red areas represent a single iteration. In ideal conditions, the time taken for tasks in an iteration should 
be nearly identical across the iteration except for the first iteration. However, after several iterations we 
started to notice that some tasks randomly take much longer to finish. This result in slowing down of the 
whole iteration and cause degradation of the computation efficiency as we can see in Fig. 7. We are still 
investigating the cause for this anomaly and we suspect it to be a behavior of Azure instances after 
stressing the instance memory for a certain time. 

 

Figure 10 MDS Task Execution Time Histogram for 20 iterations 

2. Deployment issues 
• Changing the number of roles in a “running” deployment results in a non-responding deployment. This 

happened to us several times in the past and lately we avoid this by stopping the deployment before 
changing the number of roles.  

• Deployment unreliability. Some roles never come to running state or take a very long time to start. This 
became a major issue for us when running the performance benchmarks. For an example, typically we 
had to start 132 or more roles to get 128 working roles.  

3. API issues 
• More user friendly error messages for the service requests. Most of the error messages we get from Azure 

services are generic “invalid request” messages, which do not provide information about what really went 
wrong in the request. This leads to lot of wasted time with trial and error type of development. 

• Better coherent documentation 
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4. Feature requests 
• Visibility time limit change support for queue messages. This would allow us to support much richer fault 

tolerance patterns. Amazon SQS supports this through ChangeMessageVisiblity operation.  
• Server-side Count or Sum operation for table entries. It’s very inefficient to download all the entries in a 

table to perform a simple sum or a count operation for a single table field. 
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