Experience with Adapting a WS-BPEL Runtime for
eScience Workflows

Thilina Gunarathne, Chathura Herath, Eran Chinthaka, Suresh Marru
Pervasive Technology Institute
Indiana University
Bloomington, IN 47408

{tgunarat, cherath, echintha, smarru}@indiana.edu

ABSTRACT

Scientists believe in the concept of collective intelligence and
are increasingly collaborating with their peers, sharing data
and simulation techniques. These collaborations are made
possible by building eScience infrastructures. eScience in-
frastructures build and assemble various scientific workflow
and data management tools which provide rich end user
functionality while abstracting the complexities of many un-
derlying technologies. For instance, workflow systems pro-
vide a means to execute complex sequence of tasks with or
without intensive user intervention and in ways that support
flexible reordering and reconfiguration of the workflow. As
the workflow technologies continue to emerge, the need for
interoperability and standardization clamorous. The Web
Services Business Process Execution Language (WS-BPEL)
provides one such standard way of defining workflows. WS-
BPEL specification encompasses broad range of workflow
composition and description capabilities that can be applied
to both abstract as well as concrete executable components.

Scientific workflows with their agile characteristics present
significant challenges in embracing WS-BPEL for eScience
purposes. In this paper we discuss the experiences in adopt-
ing a WS-BPEL runtime within an eScience infrastructure

with reference to an early implementation of a custom eScience

motivated BPEL like workflow engine. Specifically the pa-
per focuses on replacing the early adopter research system
with a widely used open source WS-BPEL runtime, Apache
ODE, while retaining the interoperable design to switch to
any WS-BPEL compliant workflow runtime in future. The
paper discusses the challenges encountered in extending a
business motivated workflow engine for scientific workflow
executions. Further, the paper presents performance bench-
marks for the developed system.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;
D.2.12 [Software Engineering]: Interoperability; H.3.4
[Information Storage and Retrieval]: Distributed sys-
tems; D.2.13 [Software Engineering]: Reusable Software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GCE 09 Portland, Oregon USA

Copyright 2009 ACM 978-1-60558-887-2 ...$10.00.

Keywords

eScience, workflows, scientific application abstractions

1. INTRODUCTION

In the era of data deluge and availability of vast com-
putational power, scientific communities are gearing toward
solving deeper and larger problems often crossing multiple
domain disciplines. These interconnected science problems
mandate scientists to share applications, combine multiple
application logics in flexible but planned order, and orches-
trate them together using workflows. Workflow systems
loaded with features to construct, execute, intervene, man-
age and reuse of workflows are deepening their usage. Most
of these workflow systems describe workflows in a custom
format imposing a large interoperability challenge. A solu-
tion to this growing problem is to adopt a standard work-
flow description language. The Business Process Execution
Language for Web Services (WS-BPEL)[3] is a broad spec-
ification covering both abstract and concrete executions of
components and enables to define a broad array of workflow
structures. WS-BPEL has become the de-facto standard
for specifying web service based business processes and ser-
vice compositions. Even though, scientific workflows with
their agile characteristics present significant challenges in
embracing WS-BPEL for eScience purposes. In this pa-
per we discuss the experiences in adopting WS-BPEL in
a large-scale workflow system for Linked Environments for
Atmospheric Discovery (LEAD) project [10]. Further we
describe our experiences in transiting from early research
implementation based on BPEL4WS [4] to an open source
WS-BPEL compliant engine, Apache Orchestration Director
Engine (ODE)[18].

The Linked Environments for Atmospheric Discovery (LEAD)

project is pioneering new approaches for integrating, mod-
eling, and mining complex weather data and cyberinfras-
tructure systems to enable faster-than-real-time forecasts of
mesoscale weather systems including those than can produce
tornadoes and other severe weather. Funded by the National
Science Foundation Large Information Technology Research
program, LEAD is a multidisciplinary effort involving nine
institutions and more than 100 scientists, students, and tech-
nical staff. To address the challenges of this large endeavour,
LEAD has adopted a Service Oriented Architecture (SOA)
in creating an integrated, scalable framework in which me-
teorological analysis tools, forecast models, and data repos-
itories can operate as a dynamically adaptive, on-demand
infrastructure. Unlike static environments, these dynamic
systems can change configuration rapidly and automatically

in response to weather, react to decision-driven inputs from
users, initiate other processes automatically, and steer re-
mote observing technologies to optimize data collection for
the problem at hand.

LEAD poses significant challenges to the workflow systems
demanding support for responsive, long running, hierarchi-
cal; parametric sweep (forecast ensembles) workflows and for
data streams. A single service invocation from a workflow
instance can consume time in the order of few minutes to
few hours. These long service invocation times mandates the
use of asynchronous communication within the workflows.
The long execution times prohibit the dependency on user
computers for the coordination of the workflow for several
reasons such as the user should be able to continue his nor-
mal work, the possibility of users’ personal computer being
unavailable and the possible inability of the personal com-
puter to accept outside network connections. In the LEAD
architecture the workflow engine is deployed as a server as
oppose to running in the client computer.

In 2004, LEAD implemented a research workflow system
based on a subset of BPEL4WS 1.1[4] specification, named
Grid Process Orchestration Engine (GPEL)[24]. GPEL was
specifically designed for eScience usage with LEAD like re-
quirements of long running workflows and a decoupled client
end enactment engine. The use of GPEL execution system in
LEAD was tremendously successful leading to wide usage of
the infrastructure in various educational and research efforts
including National Collegiate Weather Forecasting Competi-
tion[8], Storm Prediction Center’s Hazardous Weather Test
bed and Vortex2 Tornado Tracking Experiments. GPEL
provided many experiences to early adopters of the BPEL
efforts.

However, graduating from a research system to a produc-
tion facility and to reduce the maintenance load, LEAD had
to consider upgrading the workflow engine from an inter-
nal implementation to an openly available industry standard
version. The goals of the porting were, (i) fully support WS-
BPEL 2.0 features; (ii) ensure portability & avoid locking in
to a run time, by strictly adhering to open widely used stan-
dards as much as possible & by avoid using particular run
time specific features; (iii) ensure sustainability by choosing
a well supported run time with minimal custom changes; (iv)
minimize changes to the other legacy components of LEAD,
(v) improve the scalability & the performance.

Among many commercial implementations, an open source
workflow engine, Apache ODE, stands out with its wide us-
age, community development and fully compliant with WS-
BPEL 2.0. The Apache Software Foundation based engine
with its active developer and user communities was a nat-
ural choice for the LEAD project to adopt. But still due
to the adherence to goal (ii), eScience infrastructures using
this system will have the freedom to adopt any WS-BPEL
2.0 compliant workflow runtime with minimal changes.

Further in this paper we describe the LEAD architecture
and the challenges in integrating WS-BPEL and Apache
ODE into an existing eScience infrastructure. This paper
describes the extensions that were implemented in to the
ODE enactment engine and the auxiliary scientific workflow
specific WS-BPEL logic that had to be auto generated to
in to the WS-BPEL documents to support the eScience re-
quirements. Further we present a performance analysis of
the scientific workflow extensions enabled ODE Engine.

Further in this paper we describe the LEAD architecture

and the challenges in integrating WS-BPEL and Apache
ODE into an existing eScience infrastructure. This paper
describes the extensions that were implemented in to the
ODE enactment engine and the auxiliary scientific workflow
specific WS-BPEL logic that had to be auto generated to
in to the WS-BPEL documents to support the eScience re-
quirements. Further we present performance analysis of the
workflows orchestrated by scientific workflow extensions en-
abled ODE Engine.

2. LEAD WORKFLOW ARCHITECTURE

LEAD science project was one of the early projects im-
plementing an agile eScience infrastructure based on service
oriented architecture concepts in building a science gateway.
LEAD user communities have embraced the user-friendly,
dynamically adaptive infrastructure for educational and re-
search purposes. The LEAD architecture can be classified
into three major layers. As shown in figure 1, the top most
is the user interaction layer. The XBaya Graphical User In-
terface [21] serves as the user-facing interface enabling scien-
tists to construct, execute and monitor workflow executions.
The entire workflow system can be operated from a custom
desktop application or can be coupled with the Open Grid
Computing Environments (OGCE) based web portal inter-
face.

Web services provide standardized interfaces that are de-
fined, described, and discovered as xml artifacts. These
services facilitate secure controlled interactions with other
web services and software components, by using well known
standardized message formats. The LEAD middleware layer
includes a web service wrapper called GFac[16], which wraps
command line scientific applications into web services. These
wrapped application services can be invoked as stand alone
or can be orchestrated into workflows. These transient ap-
plication services catalogue all their job management and
data movement activity by means of a messaging framework
for provenance gathering and data catalogue services. The
second layer of the infrastructure representing various mid-
dleware components also includes a workflow composition
API, execution engine and monitoring capabilities.

The third layer represents various computing and data re-
sources from local workstations to computational clouds like
Amazon EC2. The GFac toolkit has built-in functionality
to manage all jobs and data transfers. The toolkit accepts
a request from the workflow execution system and trans-
lates the request into data movements and job submissions
to local, grid or cloud computing resources.

LEAD Scientists deploy scientific applications on various
compute resources and wrap them as application services,
which are registered with a web service registry called XReg-
istry. Further the scientists use XBaya workflow GUI to
browse and construct the registered services into workflows.
These workflows at composition time are abstract in na-
ture and do not have any concrete instances. At run-time,
the workflow systems contacts the Dynamic Service Creator
(DSC) which queries registry for any running instances and
binds the abstract workflow to concrete service instances. In
the case when no service instances are found, the DSC ser-
vice, contacts the Generic Factory Service which on-demand
creates service instances and binds them to the workflow in-
stance. Without the late binding and abstract descriptions,
all application services that are part of a workflow have to
be running all the time presenting a huge monitoring, main-

User Interactions

Web Portal - Other Clients

A
[ceros
\\
\
:
1

Middleware Services

D

Local Lab
Resources

Computational
Cloud Grids

Computational

Figure 1: Lead Architecture

tenance and resource requirements. On-demand service cre-
ation and late binding enables the workflow system to sup-
port a large number of application services with minimal
maintenance and optimal use of service hosting resources.

3. CHALLENGES EXTENDING WS-BPEL &
ODE FOR E-SCIENCE

LEAD Workflows constructed with transient scientific ap-
plication services were orchestrated by a BPEL like workflow
engine, GPEL. To reduce the foot print, to improve the per-
formance and to support new features , while retaining the
stability and integrity of the existing LEAD infrastructure,
WS-BPEL 2.0 compliant Apache ODE is swapped in as the
workflow enactment engine. As discussed in section 1, the
agile eScience requirements challenged WS-BPEL and ODE.
To fill the void, it is not ideal to branch a community code
to add custom enhancements as it puts the burden of main-
tenance back to the project. Also this would lock-in the
project to a particular workflow engine. Effort was made
to address most of the eScience requirements through auto-
generation of auxiliary WS-BPEL logic, avoiding the engine
lock-in, where ever possible through the XBaya workflow
composer. The ODE extension based architecture, allowed
us to implement the few remaining eScience requirements
as pluggable modules while retaining the core engine as the
community supported version. This section describes vari-
ous extensions made to the Apache ODE engine and the aux-
iliary BPEL logic that gets generated in to the WS-BPEL
workflow documents to support rest of the eScience require-
ments.

3.1 Propagation of workflow context informa-
tion

In SOA infrastructures like LEAD, the communication
is done through SOAP [13] messages. A SOAP envelope
contains two major parts, the header and the body. The
body element contains the application payload. An optional
header element can be used to pass optional information
that does not belong to the application payload. Accord-
ing to the SOAP specification such information may include
context information required to process the message.

A common requirement in a scientific workflow infrastruc-
ture involving distributed services is the need to pass around
the context information belonging to the workflow instance.

Context information typically consist of unique identifiers
for management & monitoring purposes, authentication in-
formation needed to access resources, and the resource iden-
tifiers needed to be used by the services. Within LEAD,
this information is encapsulated as LEAD Context Header
(LCH). The LCH is not consumed by the application itself,
but only needed by the infrastructure hence it is encoded
into the SOAP header. The LEAD context header contains

following information.

e Unique identifiers, to identify the workflow tracking
notifications of a given invocation. For example, ex-
periment ID and workflow instance ID together with
Service (Node) ID can relate notification messages to
a specific node of a workflow instance in a particular
experiment.

e End Point References (EPR) of all infrastructure mid-
dleware services (e.g. Registry, DSC, GFac) that are
needed in the given workflow/service invocation.

e Workflow level configurations information, to stage out-
put data, to perform compute resource scheduling, ur-
gent computing parameters, etc.

e Security information, to enable authentication within
the infrastructure services and to authorize with com-
putational resources.

LEAD infrastructure mandates the propagation of LCH
with all the application specific SOAP messages. This re-
quires the workflow runtime to propagate the LCH informa-
tion received in the workflow input (instance creation) mes-
sage to every service invocation message sent by the work-
flow runtime.We implemented the LCH propagation logic
using the WS-BPEL itself using a standard compliant mech-
anism, so that we can extend ODE to support this require-
ment while not changing the ODE core. This enhancement
resulted in BPEL documents which are portable across dif-
ferent BPEL engines while achieving the needed eScience
functionality.

An often-overlooked feature of WSDL [7] is its ability to
bind message parts to the SOAP header blocks. Refer to
section 3.7 and example 3 of WSDL 1.1 specification, for
more details on defining SOAP header block elements using
WSDL. All the services in the LEAD system that require the
context header information, including the BPEL processes,
define the "LEADContextHeader” as a message part in its’
WSDL bound to the SOAP header as follows.

<definitions ...>
<message name="requestMessage">
<part name="params" element="tns:payload"/>
<part name="leadHeader" element="lc:context"/>
</message>

<binding ...
<operation name="Run">
<input message="tns:requestMessage">
<soap:body parts="params" use="literal"/>
<soap:header message="tns:requestMessage"
part="leadHeader" use="literal"/>
</input>
</operation>
</binding> ...
</definitions>

Defining "LEADContextHeader” as a part of the input mes-
sage in the WSDL of the BPEL process enables the proces
instances to access that information using BPEL variables,
which in turn can be copied to the subsequent outgoing ser-
vice invocation messages. XBaya, the workflow composer of
the LEAD project has the ability to generate the appropri-
ate BPEL logic to copy the LEAD context header from the
initial workflow input message to the outgoing messages as
described above.

3.2 Asynchronous invocation

Scientific workflows typically consist of long running tasks
which translate to long running service invocations in our
use cases. As described in [14] it’s almost impossible and re-
source consuming to invoke these services in a synchronous
blocking manner. Further the service invocation messages
get routed across on many intermediary proxy services to
perform necessary tasks, before reaching the destination ser-
vice. invocation message reaches the destination service.]

This further necessitates the use of asynchronous non-blocking

messaging for the service invocations. Unfortunately the
WS-BPEL specification does not provide integrated sup-
port for WS-Addressing [12] and does not provide a stan-
dard unambiguous mechanism to specify asynchronous re-
quest /response type web service invocations.

There exist two popular mechanisms which can be used
to implement asynchronous messaging for request/response
type web service operations, (i) implementing as two one
way messages; (ii) making the invoke operation inherently
asynchronous with the use of WS-Addressing. The first
method requires reply address information to be propagated
to the web service using a proprietary mechanism and the
services to be modified to send back the response to the
specified address. Since we are adapting WS-BPEL to an
existing SOA system, it’s impossible to change each and ev-
ery service to cater this requirement. Since almost all the
LEAD service invocations are required to be performed in
an asynchronous non-blocking manner, initially we imple-
mented the second method, modifying the service invocation
layer of the Apache ODE engine to perform all the invoca-
tion asynchronously. But this method does not guarantee
the portability of the behaviour of the process document.

As a solution to the above issues we proposed [14] and
implemented a WS-Addressing based WS-BPEL extension
for asynchronous invocation of request/response type web
service operations from WS-BPEL processes. We hope the
community will consider it as a starting point to produce
a standard WS-BPEL extension for that purpose. Cur-
rently the development LEAD system uses the inherently
asynchronous non-blocking implementation, while the non-
blocking BPEL extension, which is currently on testing phase,
is expected to be rolled out to development and production
stacks in the near future.

3.3 Notifications & monitoring

3.3.1 Assigning ID’s for services

Monitoring in a traditional workflow system typically means

tracking the state changes of the workflow instances from the
workflow engine point of view. But in a complex system like
LEAD, there are lots of apparatus working behind the cov-
ers throughout the course of a workflow instance, that are
crucial to the successful completion of workflow instance.

Also a single service invocation in LEAD typically results
in executing a large computationally intensive job in a com-
putational grid which involves job submission, large data
transfers, job queuing, etc. Because of these reasons, much
finer grained monitoring of all these steps are required to
track the progress of a LEAD workflow instance.

Such fine grain monitoring necessitates unique identifiers
for each service invocation. In the LEAD system XBaya
workflow composer assigns unique ID’s for each service node
in the workflow, called node-id and workflow time-step, which
are placed in the "LeadContextHeader” when invoking the
respective services. Service implementations already have
instrumentation in place to generate notification messages
using the information in the LCH. These notifications to-
gether with unique ids such as "workflow-node-id” are used
by the workflow tracking system and the XBaya to track
the progress of the workflow. Similar to the LEAD header
propagation, we rely on BPEL code to copy the appropri-
ate workflow-node-id and workflow-time-step literal values
to the LEAD context header of the service invocation mes-
sages.

<bpel:assign>
<bpel:copy keepSrcElementName="no">
<bpel:from>
<bpel:literal>Forecast_Model</bpel:literal>
</bpel:from>
<bpel:to part="leadHeader"
variable="ModelInput">
<bpel:query>
<! [CDATA[/leadcntx:workflow-node-id]]>
</bpel:query>
</bpel:to>
</bpel:copy> ...
</bpel:assign>
<bpel:invoke inputVariable="ModelInput" ... />

3.3.2 Generation of notifications from BPEL engine

Apart from enabling the generation of notifications from
the services, we also needed to emit notifications from the
WS-BPEL engine itself about its state changes. The WS-
BPEL specification does not recommend a standard mecha-
nism to generate notifications as it is out of the scope of the
objectives of the specification. One possible options is to
use WS-BPEL to emit notifications through the addition of
extra <invoke> activities, but this makes the process docu-
ment to be extra long and the notification not to represent
the actual state change. Also this makes adds a direct de-
pendency to the workflow tracking sub-system (Eg: delays,
failures) from the process instance, while ideally it should to
be an orthogonal layer on top of the process runtime.

Almost all the WS-BPEL runtimes provide plug-in mecha-
nisms for the notification generation. We developed a runtime-
specific custom event listener based on the LEAD workflow
tracking library [23], for Apache-ODE to generate the re-
quired notifications for the LEAD system. This event lis-
tener relies on the information we received on the "LEAD-
ContextHeader” to publish the notifications. While this
mechanism is not portable, it’s always possible for us to de-
velop notification-handlers to the other WS-BPEL run-times
without much effort.

3.4 Instance Creation

In the earlier LEAD architecture (GPEL), the workflow
instance creation step was separated from the actual work-
flow execution [24]. Executing a workflow requires explicit
calling of a specific createlnstance() method of the workflow
engine to create a workflow instance, prior to sending the
first workflow input message. This initial createlnstance()
call creates an unique-workflow-instance-id, an unique End-
point reference (EPR) and a unique WSDL for the workflow
instance making workflow instances first class citizens of the
infrastructure. This extra step and the unique ids are used
by the LEAD system to setup the resources and auxiliary
services needed for the running of the workflow instance.
The returned WSDL and EPR are used to send the work-
flow input message to the workflow instance, starting the
actual execution of the instance.

In WS-BPEL, the workflow instances are created implic-

itly when messages are received to <receive> activities marked

as "createlnstance=true” and does not provide the luxury of
explicit workflow instance creation. In WS-BPEL all the
workflow instances share the EPR’s and the WSDL’s of the
parent workflow. In the current LEAD system the genera-
tion of the workflow runtime independent unique workflow
instance id and the preparation of resources are done prior
to invoking the workflow with the input message. The gen-
erated workflow instance id is embedded in the workflow
context header of the workflow input message.

LEAD workflow instance id is different from the Apache
ODE internal process instance id, which is needed in case
a user wants to use the ODE specific management API to
manage or monitor the workflow instance. We include the
ODE process instance id and the LEAD workflow instance
id in the first "workflow instance created” notification gen-
erated by the workflow run time, allowing the user to create
a correlation between the two ids.

3.5 Variable initializing

WS-BPEL requires complex variables to be initialized be-
fore using them. This also applies when copying values in
to a variable, as the structure of the variable value needs
to be present before copying in to it, except when you copy
in the whole value of the variable. Initialization of vari-
ables can be done either inline or through an explicit <as-
sign> activity. Some WS-BPEL implementations support
automatic initialization of certain variable types. But this
cannot be done accurately in some of the cases especially
when there can be ambiguities resulting due to "optional”
elements. Apache ODE does not support automatic initial-
ization of variables. We also felt that it is safer to have the
variables initialized rather than depending on an ambiguous
feature of some WS-BPEL engines. XBaya workflow com-
poser of the LEAD system, using its domain knowledge adds
explicit variable initialization <assign> activities before us-
age of the corresponding variables inside the workflow.

3.6 Deployment

XBaya Infrastructure is designed to support multiple work-
flow engines. Authors of the workflows will compose work-
flows inside XBaya and they should be able to deploy these
workflows in to different workflow runtimes. But WS-BPEL
and associated standards do not define a standard way of
packaging and deploying workflows in to a workflow enact-
ment engine. Not only different engines support different
workflow languages, but also each workflow engine has its

GPEL %9
Engine
- . i » Apachew
- :"» 6‘%1 ODE Engine g
&
\ ¢
Composition \11 R —ﬁ
and Abstract DAG Python > Taverna
Monitoring Model
4 —— & python
Dynamic %
Jrdie Python Runti
Enactor/j&w Based Enacter ython Runtime

& Interprete

Figure 2: Xbaya and the LEAD workflow sub system

own way of packaging and deploying workflows.

This was a major challenge to surpass to empower sup-
porting multiple workflow enactment engines. A decou-
pled workflow proxy service was created to handle the com-
plexities in non-standard deployment to workflow engines.
XBaya, having authored the workflows, contains enough in-
formation to create deployment descriptors and workflow
description in it. It will hand over this information to our
workflow proxy service, which in turn will properly package
these information and deploy to a given workflow engine.

For the time being ODE specific deployment descriptor
generation and BPEL generation happens inside XBaya it-
self. XBaya will send this information to workflow proxy
service. But in the future, XBaya will only send work-
flow engine independent information model to the workflow
proxy service. Workflow proxy service will then generate
the descriptors and workflow document, create the deploy-
ment bundle and deploy in to its workflow engine. This will
make XBaya fully workflow language independent and ease
the addition of new workflow engines.

3.7 XBaya Workflow Client

XBaya workflow tool is the main point of interaction for
the scientist with the workflow system and it provides a
high level SOA based programming model to interact with
the service layer of the workflow system. This scientific
workflow-programming model has been recognized as the ac-
cepted standard across different scientific disciplines as the
preferred programming model for scientific computing.

The XBaya workflow system facilitates three modes of
operations with respect to the different stages of workflow
execution, (i) Workflow composition ; (ii) Workflow orches-
tration ; (iii) Workflow monitoring. Besides interacting with
these different phases of workflow life cycle, XBaya also man-
ages authentication and authorization of workflow users and
it provides comprehensive security infrastructure based on
Grid Security Infrastructure while facilitating user autho-
rizations as well as user groups.

XBaya provides a high level workflow description language
which is referred to as the Abstract DAG model, which is
independent of conventional workflow execution languages.
This allows the composition of the workflow to be completely
decoupled from the execution as well as workflow to be
transformed to different workflow execution languages eas-
ily. The different workflow enactment environments do have
their merits and demerits, and depending on the domain sci-
ence the optimal workflow enactment environment should be
chosen to capitalize on the merits. As discussed in this pa-

@ (b) Deploy

[R
[e

\ Query AP
s

Complex Event
Processing System

Event Movement

-

Deployment
(5) Process

W\

(3)

|
i

)

(c)

Figure 3: Stream mining system

per, the Apache ODE workflow engine is well equipped to
handle long running workflows in a scalable manner where
as XBaya Dynamic enactor would provide dynamic user in-
teraction during workflow execution thus providing better
steering of the workflow. Figure 2 illustrates the architec-
ture of the XBaya workflow tool and how the interaction
with the different workflow engines would take place and
how the Abstract DAG model may get compiled into each
execution environment as necessary.

4. NEW USE CASES

In this section we explore some of the new use cases that
were made possible in the LEAD system by our adaptation
of WS-BPEL compliant run time.

4.1 Stream mining

In this framework we identify the need for the scientific ex-
periments to be able to interact with event streams because
most scientific sensors like weather radars, telescopes, etc
tend to produce events of periodic nature which can be ab-
stracted to data streams. But scientific workflows are static
data input processes and are not very good at manipulating
stream. The integration of the Streams in to the workflow
system was handled by introducing new workflow semantics
to the workflow editor and by providing a stream processing
system capable of manipulating streams efficiently.

The model would be to provide two workflows, a con-
trol workflow that would manage the stream and an Ac-
tual workflow the user has deployed.The control workflow
consists of new workflow semantic referred to as a receive-
invoke-loop, which is basically a <receive> activity waiting
for an incoming event and an <invoke> activity that in-
vokes a service with the received event and this continues
in a loop. Idea is to let the data stream be channeled to
the receive-invoke-loop so for each event in the data stream
it would invoke a service and in this case the service would
be the workflow service of the original workflow deployed by

the user.

Having this in a single receive-invoke-loop does not give
too much flexibility but the workflow semantics introduced
in this allows the scientist to program data streams similar
to a programming model used for programming workflows.
Difference would be data dependency edges in the workflow
graphs may now represent data stream rather than single
data event. Further this would allow stream filters to be in-
corporated in the workflow that would allow much flexibility
for scientists.

4.2 <for-each> for parametric studies

Many scientific applications involve parametric studies ex-
ploring a parameter space to identify or optimize a solution.
Most popular way to perform a parametric study is by it-
erating through the parametric space for a certain variable,
while keeping the other parameters constant. The ability to
efficiently perform parametric studies can be identified as a
core requirement of a scientific workflow system.

WS-BPEL <for-each> activity allows iterative execution
of a WS-BPEL activity either sequentially or in parallel,
making it a natural choice for implementing parametric study
workflows. The iterable activity can be a structured activ-
ity, such as a <sequence> activity, acting as a place holder
for other activities, giving <for-each> the ability to execute
complex WS-BPEL logic in parallel. This capability of the
new infrastructure is being currently explored for the para-
metric study use cases in the LEAD system as well as for
the chemical informatics domain.

4.3 Recovery of failed workflow instances

There have been studies of the applicability of WS-BPEL
fault handling to implement fault tolerance for the scientific
workflows. But WS-BPEL exception handling and com-
pensation is mainly aimed at undoing the effects of the
failed workflow and to perform successful clean-up, which
are important for the business workflows. As mentioned by
Wassermann|[28], the above mentioned backward recovery
focus of BPEL fault handling complicates the forward error
recovery required by the scientific workflows.

LEAD service invocations are prone to many types of fail-
ures as the best effort compute resources are susceptible to
hardware, power or cooling troubles. More over, various
abstractions build on the compute resources (depicted as
middleware in Figure 1) hides lot of heterogeneity and com-
plexity and also struggle battling enforcing standards. All
of these factors leave the eScience infrastructure tackling the
reliability issues of multiple layer underneath. End users in-
teract with the eScience infrastructures and expect a stable
platform to do science, burdening the implementation of ro-
bust fault mitigation strategies. The LEAD infrastructure
employs multi-level error recovery mechanisms to handle the
expected failures of service invocations like unavailability
of compute resources, failures of execution and data trans-
fers. This multi-level fault tolerance takes away the burden
from the workflow run time to handle most of the failures,
detailed description of handling failures at the computa-
tional resource interactions are detailed in [17]. However,
eScience infrastructure failures, though at a lesser magni-
tude contributes to over all downtime and the workflow sys-
tem should act on these failures and is discussed below in
more detail. But in a nutshell, failures are handled in mul-
tiple layers making it feasible to avoid the use of WS-BPEL

Forfach
Surface_Obs Config
Config
Fortach
NEXRAD_Levell Config
Config
Rawinsonde_Data
Config

Fortach

Surface_Data_Preproces sor
Radar_Data_Remapper

ACARS_Data
Config

Config Profiler_Data_Remapper

Wind_Profiler_Data

Forfach
Config

Config Satellite_Data_Remapper

McIDAS_Data
Config

Surface_Obs_Data_Remapper

Rawinsonde_Data_Remapper
ACARS_Data_Remapper
Config
CrossCuttingConfigurations

EndForEac
Config

ADAS_Assimilate

EndForEad]
Config

? Assimilated_ADAS_Data
Config

\AAAAAAS

EndForEacl

Config

EndForEad]
Config

NAMinitialData
Config

NAM_Initial_Conditions_Interpolater

TerrainFiles
Config

Figure 4: LEAD Data Assimilation using <for-each> activities

exception handling or WS-BPEL compensation in our sys-
tem.

LEAD infrastructure uses Hasthi management framework
[20] for services and systems management. Hasthi moni-
tors the infrastructure and performs corrective actions in
the event of an infrastructure failure. These corrective ac-
tions, among others, include recovering the non-functional
infrastructure components and resurrecting the workflow in-
stances that have failed due to the infrastructure failure
once the system is back in a healthy state. This resurrec-
tion is done by replaying the workflow input message for the
failed workflow instance, while maintaining the unique ids
that identify the workflow instance inside the LEAD sys-
tem. Workflow engine treats the replayed input message as
yet another workflow invocation and creates a new work-
flow instance. This action is transparent to the rest of the
LEAD system. This has been made possible by the stateless
nature of LEAD workflows (with respect to the workflow en-
gine) and by the usage of workflow engine independent ids
to identify the workflows. At the same time we are pursuing
another direction, where we will be using an Apache ODE
management API to resurrect the workflow instance from
the failed point onwards as an workflow runtime specific al-
ternative.

5. PERFORMANCE & RELIABILITY

In this section we will be to analysing the performance and
scalability of Apache ODE engine together with the scien-
tific workflow extensions. Our testing scenarios are focused
on the requirements of the scientific workflow use cases. The
objective of the testing is to evaluate the workflow system
with regards to the LEAD performance and scalability re-
quirements.

We used the following two workflows, a simple service in-
voke and a for-each workflow for our analysis. The simple
service invoke workflow (figure 5a) receives an input mes-
sage, performs an asynchronous web service invocation and
replies back to the client. The for-each workflow (figure
5b) receives an input message, using a <for-each>activity
iterate an <sequence> activity block 'n’ times and replies
back to the client. The sequence activity block of the <for-
each> performs an asynchronous external request-response

L
v main
: main & receivelnput
T = forEach
& | receivelnput
- = sequence
= assign -
assign
& invoke #invoke
¢ /replyOutput
1 assign
@ & replyOutput
L

Figure 5: (a) Simple invoke workflow (b) For-each
workflow

type service invocation. Apache Axis2 NIO based service
running in a different LAN was used as the external service.
First we benchmarked the external service from within its
cluster as well as from the server which hosts the Apache
ODE engine, and made sure that the service will be able to
withstand the load from the workflow engine without getting
saturated. The service was able to serve more than 4000 re-
quests per second when 100 to 250 parallel clients are used
to benchmark the service within the cluster using Apache
Bench. The service was able to server more than 2000 re-
quests per second when soapUI was used for benchmarking
from the workflow engine host, making it evident that the
service will not be a bottleneck for the performance tests.
The workflow engine and the environment were configured
similar to the run time configuration of the LEAD system.
MySql database based persistence storage for Apache ODE
and asynchronous communication for external web service
operation invocation were used during all the tests. Hence
these results should not be considered as a benchmark for
pure Apache ODE WS-BPEL run time, as the performance
will be much greater when synchronous communication and
non-persistent in memory execution will be used. The freely
available SOAPUI[25] was used as the client for the work-
flows. We flushed the ODE database and restarted Apache
Tomcat servlet container before executing each test.

Table 1: System Characteristics

Apache ODE 1.1.1

Apache Tomcat 5.5.28
Sun JDK 1.5 r20

Ubuntu Linux | 9.4 (Linux kernel : 2.6.5.28-15)

MySql 5.1.31

Memory 2.5 GB
Processor Intel Pentium 4 3.2 Ghz * 2
Network 1000 Mbps

LEAD systems most demanding requirements include weather

camp and other tutorials, where large number of workflow
invocations will be submitted simultaneously by different
users and the data stream mining use case, where workflow
invocations will be made as an when the events are received.
In both the above scenarios, the workflow engine should be
able sustain a good TPS rate not becoming a bottleneck and
not hindering the external applications. Mean transactions
per second (TPS) is calculated using the formula ((1000/Av-
erage request time) * no. of threads).

5.1 Throughput for simple service invocation

In this experiment we measured the performance with and
without the workflow status notifications. Burst mode load
test strategy, where a certain number of threads (40) will
keep on invoking the workflow for a given number of invo-
cations, is used for this test.

It’s possible to enable, disable or limit the notifications for
individual workflows using a property in the deployment de-
scriptor. Following notifications are emitted from the work-
flow in this experiment setup. (i) workflow initialized - for
each workflow instance (ii) workflow terminated - for each
workflow instance (iii) invoking service - for each service
invocation (iv) result received - for each successful service
invocation. (v) fault received - for each external service in-
vocation failure.

Table 2 and figure 6 present the results of this experiment.
Looking at the results we can conclude that the workflow
engine can sustain its performance in the face of many con-
current requests in both the cases. The ability to complete
1000 workflow instances, involving an actual asynchronous
invocation of an external service, under a minute (under 2.5
minutes with notifications) is way above the current require-
ments of our system. The performance lag of the workflow
with notifications can be explained based on the fact that it
sends 4 real time notifications, which itself are one way web
service invocations, per each workflow invocation, bringing
the total to 4000 notifications in the 1000 invocation test
run.

5.2 <for-each> Workflow Performance & Scal-
ability

<for-each> is a WS-BPEL activity that iteratively exe-
cutes its content for a given number of iterations. <for-
each> activity supports performing these iterations sequen-
tially or in parallel. We chose a <for-each> activity based
workflow for our second experiment, as it provides a con-
figurable (number of iterations) platform to measure the
sequential as well as the parallel scalability and the per-
formance of the workflow engine. An invocation strategy
where a thread waits for a small amount of time between
the subsequent invocations was used in this experiment. We

25

Without Notifications —a—
With Notifications ----e----
g 2 \\/a 1
[$)
[}
kY
§2}
3
@ 151 <
(=
2
&
E 10 | 1
-------------------- O
§ _____ T T FURNREN =
= 5! °]
0
0 200 400 600 800 1000
No. of Requests
Figure 6: Simple-service-invoke workflow perfor-
mance
10 — ; ‘
Sequential <for-each> —e—
Parallel <for-each> ----e----
Parallel with notifications &
~ 8r 1
(&)
[}
£
[2]
g
=] 6]
o
e
&
o af 1
=
c
IS
[}
= 5l A
0

Number of <for-each> Iterations

Figure 7: For-Each workflow performance and Scal-
ability

measured 100 invocations of this workflow using 10 threads
with a delay proportional to the complexity of the workflow,
for varying number of <for-each> iterations. We tested the
following 3 scenarios in this experiment. (i) <for-each> ex-
ecuting the iterations sequentially without notifications (ii)
<for-each> executing the iterations in parallel without the
notifications (iii) <for-each> executing the iterations in par-
allel with notifications.

The results are presented in table 3 and in figure 7. Ac-
cording to the results both sequential as well as the parallel
workflows scale well. One observation that might look sur-
prising is the performance similarity of the sequential and
the parallel workflows. This should be happening due to
the very fast turnaround time of the external service, which
overshadows the benefits of parallelism over sequential pro-
cessing. A quick test, where we used a service operation with
a 10s delay for the <invoke> activity, proved this reasoning.
Average turnaround time for a workflow invocation with 5 it-
erations in the parallel <for-each> scenario is 12990 ms (0.39
TPS) while the average turnaround time is 51517 ms (.097
TPS) for the same scenario using a sequential <for-each>,
giving more than a factor of 4 speed-up in the parallel work-
flow. This test was done similar to the above <for-each>
experiment, but with only 5 threads invoking the workflow

Table 2: Simple invoke workflow

No. of Requests Simple Invoke Simple Invoke with Notifications
Avg. Request (ms) | Mean TPS | Avg. Request (ms) | Mean TPS

100 1954 20.47 5835 6.1

250 2078 19.25 4828 8.01

500 2188 18.27 4687 8.39

750 2256 17.72 5558.5 7.1

1000 2222 17.99 5481 7.22

Table 3: For-each workflow performance and scalability

Sequential for-each Parallel for-each Parallel for-each with notifications Delay
Iterations | Avg Time | Mean TPS | Avg Time | Mean TPS | Avg Time | Mean TPS | Notifications | Used
per Req(ms) (#/sec) per Req(ms) (#/sec) per Req(ms) (#/sec) per Workflow | (ms)
1 1072 8.41 1072 8.41 1905 5.24 4 100
5 3064 2.76 3175 3.14 4397 2.27 12 500
10 6159 1.38 6120 1.63 8223.7 1.21 22 1000
15 9514 0.89 9367 1.06 12093 0.82 32 1500
25 15505 0.55 10424 0.76 20195 0.49 52 2500

with a delay of 15 seconds between the subsequent invo-
cations. At the same time the parallel performance being
slightly higher than the sequential even with the very fast
service proves that the parallel overhead is minimal in this
system. Workflow parallelism plays a very important role
in the eScience workflows, where the service invocations are
long running. Even making a couple of invocations in par-
allel makes a huge different in those scenarios.

As you can notice the overhead of the notifications system
is noticeably low during the for-each experiment than in the
simple-invoke experiment. This is due to the fact that the
notification system [23] uses a single thread per workflow in-
stance. When the workflow instance is much more complex
and time consuming, which is the common case in eScience
workflows, the overhead created by the single threaded noti-
fication system gets diminished. Still, the workflow tracking
library developers are currently working on a new architec-
ture to improve the performance.

6. RELATED WORKS

There have been efforts to evaluate the viability of use of
BPEL in scientific workflow systems and [1] provides eval-
uation of WS-BPEL as a workflow modeling language with
respect to few abstract requirements that it had identified
such as fault tolerance, roll-back and recovery, user interac-
tion and monitoring and dynamic adaptation.

Most scientific workflow systems are designed to solve
problems in certain domain specific environments and be-
cause of that, the computational model presented by these
workflow systems exhibit features that are specific to the
particular scientific domains. Many scientific workflow sys-
tems provide workflow languages with syntax and semantics
defined to address the domain issues. Scientific workflow
systems like Taverna[l15], Kepler[2], Triana[26], Pegasus[9]
and others[28] are examples of such workflow systems. On
the other hand WS-BPEL being a standard specification has
standardized language syntax and semantics and thus can be
developed independent of complexities associated with sci-
ence domains. In almost all case workflow systems that use
WS-BPEL compliant workflow execution systems tend to
use third party implementations of the WS-BPEL specifica-
tion in most cases using open source products. Apache ODE

and Active BPEL are such WS-BPEL engines and numerous
commercial vendors have published their own implementa-
tion of the WS-BPEL as well. GPEL[24] workflow engine
is a rare case where a science gateway has developed their
own implementation of the WS-BPEL specification with mi-
nor extensions to incorporate domain specific requirements
by having minor extension to the execution semantics. The
work presented in this paper can be distinguished from the
related work so far because, it address the pure WS-BPEL
approach to scientific workflow and how the WS-BPEL se-
mantics can be effectively used in scientific workflow con-
text. The use of standardized workflow execution languages
also forces the workflow systems to decouple the workflow
execution from the workflow composition thus allowing the
workflow systems to be more interoperable.

Trident workflow system[6] is a commercial workflow sys-
tem developed by Microsoft cooperation to facilitate scien-
tific workflows and provides application of the trident work-
flow in oceanography science gateway[5]. Trident workflow
system uses Windows Workflow Foundation [22] as its work-
flow engine which supports WS-BPEL specification but it is
converted to internal representation of the workflow engine
before execution.

Apart from the experience that was presented about the
LEAD workflow system in the earlier section, the Open Mid-
dleware Infrastructure Institute (OMII) presents a workflow
management system that uses the approach presented in ear-
lier and utilizes a third party open source WS-BPEL imple-
mentation Active BPEL as its workflow engine and builds a
scientific workflow management system [27]. This workflow
system OMII-BPEL utilizes the infrastructure services to
address the issues associated with the grid computing envi-
ronment [11] while keeping its workflow execution semantics
clean.

7. EXPERIENCE

Scientific workflow extended ODE, the deployment proxy
service and XBaya has been successfully deployed on the de-
velopment LEAD infrastructure for about one year, where
there have been thousands of workflow deployments and re-
deployments. Also currently there are several other eScience
projects evaluating the ODE-WS-BPEL based workflow suite.

One of the goals when adapting WS-BPEL to the LEAD
system was to minimize the amount of LEAD specific changes
to the workflow engine, Apache ODE. In order to achieve
that, we architected most of the LEAD requirements using
standard WS-BPEL logic, with the exception of notifications
and asynchronous invocation support for request/response
web services. Scientific workflow extensions for Apache ODE
as well as WS-BPEL enabled XBaya workflow composer,
which has the ability to generate WS-BPEL documents con-
taining the WS-BPEL logic for scientific workflow exten-
sions, are available to the users through the Open Grid Com-
puting Environments (OGCE) project [19]. The LEAD-
ODE project in OGCE repository has an Apache Maven2
build which will inject the scientific workflow extensions
to the latest supported version of the Apache ODE work-
flow engine. Work is currently underway[14] to implement
the asynchronous invocation component as a standard WS-
BPEL extension, which would allow us to contribute it back
to the Apache ODE community.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the foundations
laid by Aleksander Slominski and Satoshi Shirasuna and
mentoring by Prof. Dennis Gannon and Prof. Beth Plale
without which the current work would have not been pos-
sible. Furthermore the authors would like to thank Srinath
Perara, and Lavanya Ramakrishnan for their direct and in-
direct contributions. The development of the infrastruc-
ture is funded through LEAD project supported by National
Science Foundation (NSF) Cooperative Agreements ATM-
0331594, ATM-0331591, ATM-0331574, ATM-0331480, ATM-
0331579, ATM-0331586, ATM-0331587, and ATM-0331578.
The workflow infrastructure is being packaged, tested and
supported through NSF Award number 0721656, SDCI NMI
Improvement: Open Grid Computing Environments Soft-
ware for Science Gateways. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of
the National Science Foundation.

9. REFERENCES
[1] A. Akram, D. Meredith, and R. Allan. Evaluation of

bpel to scientific workflows. In Proceedings of the Sixth
IEEFE International Symposium on Cluster Computing
and the Grid, pages 269-274, 2006.

[2] 1. Altintas et al. Kepler: An extensible system for
design and execution of scientific workflows. In 16th
International Conference on Scientific and Statistical
Database Management (SSDBM’04), 2004.

[3] A. Alves et al. Web services business process execution
language, version 2.0, 2007.

[4] T. Andrews et al. Business process execution language
for web services, version 1.1, May 2003.

[5] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam,
K. Grochow, and E. Lazowska. Trident: Scientific
workflow workbench for oceanography. In IEEE
Congress on Services-Part I, pages 465—466.

[6] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam,
and Y. Simmhan. The Trident Scientific Workflow
Workbench. In Proceedings of the 2008 Fourth IEEE
International Conference on eScience, pages 317-318.
IEEE Computer Society Washington, DC, USA, 2008.

[7] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. WSDL: Web services description
language 1.1. http://www.w3.org/TR/wsdl, 2001.

8]

[9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]

(21]

(22]

23]

[24]
25]

[26]

R. Clark et al. The LEAD-WxChallenge pilot project:
enabling the community. 24th Conference on IIPS,
2008.

E. Deelman et al. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219-237, 2005.

K. Droegemeier et al. Linked environments for
atmospheric discovery (LEAD): A cyberinfrastructure
for mesoscale meteorology research and education.
20th Conf. on Interactive Information Processing
Systems for Meteorology, Oceanography, and
Hydrology, 2004.

W. Emmerich, B. Butchart, L. Chen, B. Wassermann,
and S. Price. Grid service orchestration using the
business process execution language (BPEL). Journal
of Grid Computing, 3(3):283-304, 2005.

M. Gudgin et al. Web services addressing, 1.0.
http://www.w3.org/TR/ws-addr-core/, May 2006.

M. Gudgin et al. Soap version 1.2.
http://www.w3.org/TR/soapl12/, 2007.

T. Gunarathne et al. Ws-bpel asynchronous
invocation of request/response type web service
operations. Technical report, Indiana University
School of Informatics & Computing, Bloomington, IN,
USA, 10 2009.

D. Hull et al. Taverna: a tool for building and running
workflows of services. Nucleic acids research, 34(Web
Server issue):W729, 2006.

G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna,

S. Marru, and D. Gannon. Building web services for
scientific grid applications. IBM Journal of Research
and Development, 50(2/3):249-260, 2006.

G. Kandaswamy, A. Mandal, and D. Reed. Fault
Tolerance and Recovery of Scientific Workflows on
Computational Grids. Cluster Computing and the
Grid, 2008. CCGRID’08. 8th IEEFE International
Symposium on, pages 7T77-782, 2008.

Apache ode project. http://ode.apache.org/.

Open grid computing environments : Portal and
gateway toolkit. http://www.ogce.org.

S. Perera, S. Marru, T. Gunarathne, D. Gannon, and
B. Plale. Application of management frameworks to
manage workflow-based systems: A case study on a
large scale e-science project. Web Services, IEEE
International Conference on, 0:519-526, 2009.

S. Satoshi. A Dynamic Scientific Workflow System for
the Web Services Architecture. PhD thesis, Indiana
University, Bloomington, 2007.

K. Scribner. Microsoft® windows® workflow
foundation step by step. 2007.

Y. L. Simmhan, B. Plale, and D. Gannon. A
framework for collecting provenance in data-centric
scientific workflows. In ICWS ’06: Proceedings of the
IEEE International Conference on Web Services,
pages 427-436, Washington, DC, USA, 2006.

A. Slominski. Adapting BPEL to Scientific Workflows.
Workflows for e-Science, pages 212230, 2006.

soapui : Web service testing tool , version 3.0.1.
http://www.soapui.org.

I. Taylor et al. The triana workflow environment:
Architecture and applications. Workflows for
e-Science, pages 320-339, 2007.

B. Wassermann and W. Emmerich. Reliable scientific
service compositions. LECTURE NOTES IN
COMPUTER SCIENCE, 4652:14, 2007.

J. Yu and R. Buyya. A taxonomy of scientific
workflow systems for grid computing. Sigmod Record,
34(3):44, 2005.

