
Title
Collaborative Web services and the W3C Document Object Model

Authors
Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox

Postal Address
Community Grids Lab, Indiana University
501 N. Morton St, Suite 222
Bloomington, IN 47404-3730

Xiaohong Qiu
Email: xiqiu@syr.edu
Phone: 812-8560754
Fax: 812-8567972

Bryan Carpenter
Grids Computing Lab, Indiana University
501 N. Morton St, Suite 222
Bloomington, IN 47404-3730
Email: dbcarpen@indiana.edu
Phone: 812-8560762
Fax: 812-8567972

Geoffrey C. Fox
Grids Computing Lab, Indiana University
501 N. Morton St, Suite 222
Bloomington, IN 47404-3730
Email: gcf@indiana.edu
Phone: 812-8567977
Fax: 812-8567972

Abstract

The Internet makes it possible to share information (e.g. text, image, audio, video and other formats of data)
across the globe. The W3C DOM sets up document objects representation standard of information. We are
attempted to build more powerful collaborative distributed systems over the Internet that provide high-
quality, interoperable and transportable Web Services. Can we meet our goal with the help of XML
technology and an event-driven “message passing MVC” model? This article shows our approach and
answer.

1 Introduction

 1

mailto:xiqiu@syr.edu
mailto:dbcarpen@indiana.edu
mailto:gcf@indiana.edu

Grids, peer-to-peer networking or more generally Internet systems (or Internet computing) are developing
both new technologies and new approaches to large scale applications. These efforts are developing
pervasive shared resources and capabilities managed to support dynamic or structured virtual organizations
[1,2]. There are several key projects such as TeraGrid [3], the UK e-science program [4] and technologies
such as Globus [5], Gnutella [6,7], JXTA [8] and JINI [9]. In the Community Grids laboratory at Indiana
University, we have proposed peer-to-peer Grids [10,11] integrating many of these ideas, and developed

some prototype technology
components as well as some full
systems. We have emphasized the
special requirements of real-time
collaboration [12,13], as needed in
distance education [14] and support
of distributed research collaboratories
[15]. In this paper we focus on one
part of this program – how should
applications be built in peer-to-peer
Grids so that they can be easily
integrated and take advantage of other
services. The answer to this is
simple/clear – namely applications
are just (software) objects and in
today’s Grids and P2P networks,
distributed objects are built as Web
services [16]. We have explained in
an earlier paper [11] how one can in
fact make general Web Services
collaborative by sharing either the
input or output resource-facing and
user-facing ports (figure 1). We have

also introduced two useful technology components to support this.

1) A Web Service that supports collaboration by providing the Web service equivalent of H323, SIP and

2) an manage the unicast and

Critical to the concept of collaborative web services illustrated in figure 1, is that Web services are built

Although any application is “just an object”, it is not like a distributed object or Web Service with message-

Figure 1 One way of setting up Collaborative Web services
involving replicating the application and using the system event
service (in our case NaradaBrokering) to share state-defining
messages. We show user-facing (UFIO) and Resource facing
(RFIO) Web service ports

WS
Display

WS
Viewer

WS
Display

WS
ViewerEvent

(Message)
Service

Master

WS
Display

WS
Viewer

Web
Service

F

I

U

O

F

I

R

O

Shared Input Port (Replicated WS) Collaboration

Other
Participants

Web
Service

F

I

U

O

F

I

R

O

Web
Service

F

I

U

O

F

I

R

O

Collaboration as a WS
Set up Session with XGSP

Resource
Facing Port

JXTA functions – these include establishing sessions, clients, profiles and a collection of shared
resources. There is a new XML protocol XGSP introduced to capture the messaging needed to
implement this which we term “Collaboration as a Web Service”. [17,18]
An event and messaging infrastructure NaradaBrokering [18, 19] that c
multicast delivery of messages between the different clients. NaradaBrokering copes with multiple
protocols (both TCP/IP and UDP based) and tunnels through firewalls and network bottlenecks
determined by a performance module.

around messaging – their state is determined by control messages from the user or other services and their
“meaning” (in particular their output display) is defined by messages sent from other Web services. This
idea has prompted the development of WSRP (Web Services for Remote Portals) to specify the form of
user-facing ports [20].

based input and output. Rather one has integrated software that bundles user interface, the “core of
application” and system interactions (to files and other programs) in a single package. Microsoft Word ,
used to prepare this paper, is such a classic or legacy application. In fact there are the equivalents of the
Web services messages “hidden” inside the application where the message might appear as a method call
with the message placed on the program stack. Recognizing this, a variant of WSRP, WSIA (Web Services
for Interactive Applications) has been proposed for such cases [20].

 2

Here we wish to investigate an approach that essentially builds all applications as Web services and
correspondingly

1) Defines all system interactions with messaging on resource facing ports
2) Separates the application into a “user interface” portion and a functional “core”
3) Converts all user interaction (such as mouse and keyboard actions) in the “user interface” to messages

sent for interpretation at the Web service

We suggest applying this design principle systematically will lead to many advantages including easier
support of universal access [21], easy deployment on server-controlled network computers, and the natural
support of collaboration. We are investigating this idea both in applications like Word but this is not trivial
because the object model defining such applications is not freely available. So here we choose to look at an
application – the Java SVG (Scalable Vector Graphics) application [22] – whose full source is available
from Apache [23]. This application also has the important feature that it faithfully supports the W3C
document object model DOM [24-26] which essentially defines all needed SVG state in terms of their
event model. Further we can expect browsers, word processors and presentation programs to eventually
adopt such an object model. Thus we believe our study will indicate how any W3C DOM based application
can be built in the Web service fashion. In other publications we have explored the universal access
implications of this idea by using it to support collaborative SVG between desktop and PDA devices [27].
The work illustrates that the user interface can have many different realizations – it could just be a viewer
of a bitmap image as in other PDA work or can be the display of a vector graphics standard. There we did
not explore the W3C DOM rich event model, which is the focus here.

In the following sections, we introduce the key concepts: Web services, W3C DOM, SVG and the well
established MVC (Model View Controller) approach which is closely related to the Web service design
pattern. We then describe our design of an “event-driven message passing” collaborative SVG viewer
system, analysis of the different event types and current results. These are built on the NaradaBrokering
and XGSP infrastructure already developed and tested in conventional web service case. Finally we present
some conclusions.

2 Background

2.1 Web Services

With the using of Internet broadened and in depth, the web has already become the communication
infrastructure not only for people to people but also for application to application. The programmatic
interfaces made available are referred to as Web services [16]. They are aimed at using XML to build
distributed information processing systems that work across the Internet. W3C Web Services Description
Language (WSDL) [28] provides a model and an XML format for describing Web services (e.g. abstract
functionality and context information for their executions). Legacy applications that implement Web
Services interface are made services that are accessible through the web.

2.2 W3C DOM

The World Wide Consortium (W3C) Document Object Model (DOM) [24,25] is a platform- and language-
neutral interface that defines how browsers and other software represent documents as objects to
dynamically access and modify a document’s contents, structure and style. In fact, this specification defines
a standard set of fundamental interfaces (as in DOM Core Level 1 specification) that are capable of
representing any structured document model, not just a programmatic interface for XML and HTML. In the
broadest possible sense, any information can be represented by Document objects – text, graphics, audio
and video, hyperlink and other formats of data.

 3

While a typical DOM structure model is a hierarchical tree, an entire HTML or XML document can be
represented as a Document object. Conceptually, the document interface is the root of the document tree
with Node objects and provides implementations to insert, remove and alter the nodes in the tree.

Furthermore, DOM Level 2 Event Model [26] defines a generic event system which allows registration of
event handlers, describes event flow through a tree structure, and provides basic contextual information for
each event. There are three types of events in the DOM; firstly UI events (user interface events that are
generated by user interaction through an external device such as mouse and keyboard); secondly UI logical
events (device independent user interface events such as focus change messages or element triggering
notifications); and finally Mutation events (events caused by any action which modifies the structure of the
document). In this paper, we combine the latter two types of DOM events as so called Semantic events.
The latter also include other high-level actions defining state of system but not recording directly a user
action. Semantic events are usually generated by UI events and we are careful not to double count when we
replay events (the basis of collaboration).

Since most of DOM APIs are interfaces rather than classes, vendors can implement them as a thin veneer
on top of their proprietary data structures and APIs, and content authors can write to the standard DOM
interfaces rather than product-specific APIs. This increases interoperability on the Web. The W3C DOM is
the standard for modern browsers and expected to be the future of web development.

2.3 W3C SVG

Scalable Vector Graphics (SVG) is a new XML-based language for describing two-dimensional vector and
mixed vector/raster graphics from the W3C [22]. Compared with raster graphics (pixel images such as
JPEG, GIF, PNG and BMP), developing web pages or application GUI with SVG has the merit of being
scaleable without loss of resolution.

Another great attraction to graphical Web developers is that SVG has the features of openness,
interoperability and transportability. The information about an image is stored as plain text with XML
rather than in a proprietary binary format like those of Adobe Postscript and Macromedia Flash files from
graphic design systems. Sophisticated applications of SVG are possible by use of a supplemental scripting
language (e.g. JavaScript) which manipulates the SVG Document Object Model (DOM). SVG provides
complete access to all graphic objects (vector graphic shapes, images and text), attributes and properties
interactively and dynamically. A rich set of event handlers such as onmouseover and onclick can be
assigned to any SVG graphical object.

We may think of SVG as a particular XML-based application of the W3C DOM. Using SVG as client
graphical User Interface for browsers and more general distributed applications is very promising ─ it
makes it easier to develop GUIs that present documents in a unified layout over a variety of displaying
devices (from PC monitor, PDA screen to Printer, etc.).

2.4 MVC Techniques

The well-known Model-View-Controller (MVC) framework [29] is the central concept behind the
Smalltalk-80 user interface. MVC applications are split into several triads each of which comprises a
relationship between a Model object, a View object and a Controller. The view manages the graphical
and/or textual display. The controller interprets the mouse and keyboard GUI events, commanding the
model and/or the view to change accordingly. The model implements core functions of the application (the
state and behavior of application domain), responds to requests for information about its state (usually from
the view), and responds to instructions to change state (usually from the controller). The picture below
illustrates the basic Model-View-Controller relationship.

The MVC model has been the basis for most widely used graphical environments nowadays [30]. Currently
this approach is typically implemented as an event-driven MVC model, where the controller becomes an

 4

http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/SVG/interact.html

event handler that dispatches mouse events, keyboard events, and other system events, to the corresponding
processing functions in the model. Microsoft Windows [31] and Java Swing UI components [32] are
examples of event-driven MVC architecture.

3 Collaborative DOM Applications

3.1 Message passing MVC

In our collaborative DOM application architecture, we use the fundamental concepts of the MVC
framework but adapt it to the more distributed event-driven “message passing MVC” design (where an
event-driven message passing system takes the role of Controller) suggested by Web Services. Each client
or collaborative component (a classic application like Word for example) is split into the view -- a basic
user interface and presentation layer which is mainly concerned with accepting DOM UIEvents (mouse and
keyboard events) and a functional model layer. The latter implements computation and modification of the
DOM objects, and may also include graphical preparations for rendering of a DOM object although this
part can be moved to the rendering part of the view. As the view and model are designed to be separate
components running on different machines, the details of their hosts and connection network determine
how much functionality one puts into each. The Controller becomes an internal event-handler within a
stand alone client and is an event-driven message passing layer externally between collaborative clients.
Namely, primitive event information (UIEvents) is packed into events at the view user interface layer,
passed on as messages and interpreted at the Model. Finally the user interface will get a feedback response
from the Model.

The message passing mechanism seamlessly glues the architecture of a client (internally) and that of a
collaborative component (externally) together in a unified interface ─ message. It makes the framework
more distributed, dynamic and powerful, in addition of the merits (e.g. scalability, maintainability and
reusability) that are gained from MVC.

3.2 Event Structure
Events play an important role in a collaborative DOM system as they contain all the information of
collaboration. Specifically, events bridge the mapping from user interactions to corresponding core
functions of respond. We have the following ways of marking events types:
1) We classify DOM events into two categories – UIEvents and semantic events.
The former comes from user input ─ mainly mouse and keyboard events; the latter higher level events are
usually generated from UIEvents and represent functionality of the application or service. They includes UI
Logic Events and Mutation Events of DOM. Examples of semantic events in a SVG viewer application are
“Open a SVG document”, “Open An New Window”, “Open A Hyper Link”, “Zoom in”, “Zoom out” and
“Rotation” in a SVG viewer.

2) Master events vs. non-master events
In our collaborative session, all participating clients subscribe to an event topic through NaradaBrokering
system. Among them, only one client withholding “master” token generates master events that trigger
collaborative behaviors in the communication group. Therefore, events come from other participating
clients are non-master events.

3) Major events vs. minor events
To build a robust system, we have to take into consideration that the following scenarios will occur in the
real world: clients join and leave a collaborative session asynchronously; a client system crashes and
reboots; a service of replay (recording of the collaborative session so far) is requested, and so forth. For the
purpose of synchronization and replay functions, we design a mechanism that marks the synchronization
point with major events. Major events are selected semantic DOM events (such as load a SVG file and
open a new window) which fully specify the application state. Minor events are events like “mouse move”
specifying “small” system changes.

 5

Collaboration involves sharing state between collaborating applications and we define state in terms of a
stream of time-stamped change (minor) events applied to a given initial state which is a major event. We
commit this sequence of changes “every now and then” to form new major events that fully specify the
application but keep both major events and the minor events that led up to them. A change (minor) event
based application specification is most powerful as one can dynamically choose which events to accept and
which events to discard; further each collaborative client can inject their own events. A state (major) event
is the most efficient way of specifying the instantaneous state of an application. By keeping both major and
minor events we can trade off performance and flexibility. Note both the full state and change
specifications are thought of as “just events”.

4) Collaboration as a Web Service (XGSP) Events
All information in our approach is carried by events transported by NaradaBrokering. The nature of the
collaboration (e.g. who is in the session and what applications are shared?) is specified by XGSP [11] and
generated by the Collaboration Web Service. This service initiates collaborative applications such as SVG
discussed here and for example generates the “master token”. Thus the Controller event handler must
process both events specialized to the application and such overall control events.

5) Structure of Events
An event contains information such as follows:

• An original UIEvent or selected semantic events of DOM
• Event types (e.g. master/non-master, major/minor)
• Context information of the collaboration (e.g. client ID, session/topic, windows name in a

multi-SVG viewer application, event sequence number)
• Context information of the Web services specifying application and collaboration session.

3.3 Interaction between DOM and Web Service

Figure 2 outlines the basic idea of a DOM
application as a Web Service. We split
the application into user interface layer
and functional core layer. The separation
may look simple, but the event-driven
message passing layer (controller) makes
the system distributed and very powerful.
The model runs on a server as a Web
Service and the view runs as a client
interfacing with the user. The controller
can be distributed between these
components to suit capabilities of host
machines and network. For a thin layer
client system, as with network computers
or small devices, one may move nearly all
the computation to the back-end server
and leave very simple interactive
functions to the user interface. In a Web
Service DOM application, the
communication between client interface
and Web Service server is elegantly done
by passing as messages both the state-
defining events and the rendering

information defined in the Web service. This leaves just some relatively simple tasks, such as interpretation
of UIevents and messages, implemented at the client side, together with the final rendering. Semantic
events can be implemented either on the client or the backend Web service depending on convenience and
performance issues.

User Facing Ports

Web Service Application (Model)
DOM Application as a Web service

Web Service Application (Model)
DOM Application as a Web service

Remaining W3C DOM semantic events

Control

Data
Web Service DOM

Resource Facing Ports

Web Service Application (View)

W3C DOM User Interface

Selected W3C DOM semantic events
W3C DOM UIEvents

Figure 2 DOM Application as a Web Service

Rendering as
Messages

Events as
Messages

 6

We have Resource Facing Ports and User Facing Ports as the interfaces between the Web service and
resources, and Web service and user interface, respectively. The former ports supply the information
needed to define the content of the Web service; the latter carry control information from user or rendering
information from Model. We exploit the fact that the state and results of a Web service is entirely defined
by messages on these ports. Control information is included in two classes of messages ─ events (UIEvents
and/or semantic events) that trigger changes of Model (e.g. DOM document modification) flow from the
client user interface to Web Service server; rendering messages carrying display changes (e.g. buffered
bitmap image) flow in the reverse direction.

3.4 Collaborative DOM
As we may think of any functional unit as an object of certain type (no matter whether it is a segment of
text, a graph, a file, a software, a supercomputer, an endpoint of Grids, a peer in the networking or a Web
service), DOM provides a standardized interface of universal access to those objects. Therefore, the
approach of building collaborative DOM is a meaningful exploration and a building block of our
architecture for general Internet systems (or Internet computing.)

Since SVG is essentially an application of DOM, as an experiment in building collaborative DOM, we have
designed and implemented a collaborative SVG viewer system. A SVG viewer is just like an ordinary web
browser except that all the contents are rich graphical contents from SVG files. Interactions like zoom in
and zoom out will bring an enlarged or shrunken portion of the contents in appropriate ratio while keeping
the same resolution. In a collaborative SVG viewer system multiple clients that join a collaboration session
can view rendered graphics, texts and client interaction feedbacks in a synchronized fashion.

Architecturally, there are many styles and approaches to implement collaboration [10,11]. However, the
key to a collaboration system is “sharing”. To implement a collaborative SVG viewer, we need to map or
convert a classic SVG viewer application to a MVC model and make it an event-driven message passing
system (figure 2). Moreover, we need to define collaborative events that have sufficient information
describing synchronized behavior among clients (subscribers in the same session). Note that these
collaborative events are shared and the mechanism of control is implemented by passing events and

rendering messages through User
Facing Ports. The key structure
of collaborative SVG (or DOM)
is illustrated in figure 3. The
lower part (with a classic
application) shows how to
abstract events of a classic
application and make it
collaborative. The right part of
the graph displays a Web service
application (with service
functions and view separated)
that are synchronizes with the
master application through event-
driven messages in the
collaborative system.

User Facing Ports

Web Service Application (View)

W3C DOM UIEvents

W3C DOM User Interface

DataCollaborative DOM

Control

DOM
Application

DOM Application
as a Web service

Collaborati
on

Collaboration
as a Web service

Events as Messages

Figure 3 Collaborative DOM as a Web Service

Classic Application

Model and Data

W3C DOM semantic events

W3C DOM UIEvents

W3C DOM User Interface

We define a collaborative event

as an object that wraps original SVG events (as in the classic application) with additional context
information for collaboration and Web services. The context information helps to guide the events passage
through the NaradaBrokering system [19] (events and messaging infrastructure) to reach other clients
(subscribers in the same session). The receivers un-wrap the collaborative event and get an SVG event that
defines detailed actions on SVG DOM. The Model part of Web service application analyses the SVG event
based on its type and then execute actions as appropriate.

 7

3.5 Collaborative SVG implementation

As in typical collaboration systems [11,12,13,17] , we assume there is a single “master” client that
“controls” the Web service, and all other participating clients update their states according to messages
reflecting the view from the “master” client. In the so-called shared event collaboration model (equivalent
to Shared Input Port model of figure 1), we have control information flowing from the “master” client to

the NaradaBrokering system
(which manages event
queues that support the
publish/subscribe model)
and then reach
“participating” clients – the
other members of a
collaboration session. As
show in figure 4, the
“master” client creates
collaborative events ─ one
copy flows within its own
system and another copy is
sent out to other clients in
collaboration. Although one
can have much more
complicated scenarios with
interchangeable control,
only one “master” is
typically instantaneously
chosen among the clients.
The participating clients
only respond to the event
message coming from the

“master” client and implement the same behavior as the “master”. Thus, all clients are synchronized in a
collaborative session.

Application as a Web service
Application as a Web service

Participating Client

RenderingRendering

User Interface

W3C DOM Events

From Master

From
Collaboration
As a WS

Events

Application as a Web service
Application as a Web service

Master Client

RenderingRendering

User Interface

W3C DOM Events

To Collaborative Clients

From
Collaboration
As a WS

Events

Control flow for collaborative SVG clients

Figure 4 Control flow for collaborative SVG clients

While there is only one SVG viewer application running at each client side in a collaborative session, each
SVG viewer may load multiple SVG files with each in a separate window. This is in fact implemented by a
top-level instance of the application window as the root window. It pawns multiple threads that generate
multiple sub-windows. The root window usually saves context information (e.g. user interface CSS and
font settings) for windows lower in the hierarchy. To make sure that an event will be invoked in the correct
window, we design a CollaborativeEventsProcessor object that loops through an internal event queue (of
collaborative event message objects) and handles incoming event messages ─ identifying and dispatching
messages through the EventsRepository (an internal event queue of collaborative event message objects)
and handles incoming event messages ─ identifying and dispatching messages through the program to the
appropriate window.

4. Conclusion
As discussed in earlier sections, we have designed and prototyped an approach to building DOM
applications as a Web service and then making them collaborative. We have reached the following
conclusions from the work reported in this paper ─
1) To share “legacy applications” like Microsoft Word and make them as shared Web services, it is

important to convert the systems to an event-driven “message passing MVC” model (figure 2). Namely

 8

separating preliminary user interface interactions from core computation or processing functions while
using message passing For this strategy, systems with object-oriented design are particularly suitable
as illustrated by the Java Batik SVG

2) A collaborative event object should be well defined and contains sufficient information for
collaboration (including context information of collaboration, Web service and original SVG events
information). It reflects the essence of control in an event-driven message passing model.

3) With the successful experience of building collaborative SVG DOM, we build up confidence for
continuing the approach of building other applications as Web services and using a similar
collaboration strategy. OpenOffice and Microsoft Office are natural applications to consider next.

References

Grid Computing: Making the Global Infrastructure a Reality edited by Fran Berman, Geoffrey Fox
and Tony Hey, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0, February 2003

1)

2) The Grid Forum http://www.gridforum.org
3) TeraGrid Project http://www.teragrid.org/

United Kingdom e-Science Activity http://www.escience-grid.org.uk/ 4)
Globus Grid Project http://www.globus.org 5)
Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology, edited by Andy Oram, O’Reilly
Press March 2001.

6)

7) Gnutella P2P System. http://gnutella.wego.com
8) Sun Microsystems JXTA Peer to Peer technology. http://www.jxta.org.

Sun Microsystems Jini Java service technology http://www.sun.com/jini. 9)
10) Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Xi Rao,

Shrideep Pallickara, Quinlin Pei, Marlon Pierce, Ahmet Uyar, Wenjun Wu, Choonhan Youn, Dennis
Gannon, and Aleksander Slominski, “An Architecture for e-Science and its Implications” in
Proceedings of the 2002 International Symposium on Performance Evaluation of Computer and
Telecommunications Systems, edited by Mohammed S.Obaidat, Franco Davoli, Ibrahim Onyuksel and
Raffaele Bolla, Society for Modeling and Simulation International, pp 14-24 (2002).
http://grids.ucs.indiana.edu/ptliupages/publications/spectsescience.pdf

11) Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Shrideep
Pallickara, Xiaohong Qiu, Ahmet Uyar, Minjun Wang, Wenjun Wu Collaborative Web Services and
Peer-to-Peer Grids presented at 2003 Collaborative Technologies Symposium Orlando January 20
2003 http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf

12)
13)
14)

15)

WebEx Collaboration Environment. http://www.webex.com
Placeware Collaboration Environment. http://www.placeware.com
Collection of Resources on distance education by Community Grids Laboratory
http://grids.ucs.indiana.edu/ptliupages/publications/disted/.
Geoffrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur Balsoy, Jake Kim, Sangmi Lee, Kangseok Kim,
Sangyoon Oh, Xi Rao, Mustafa Varank, Hasan Bulut, Gurhan Gunduz, Xiaohong Qiu, Shrideep
Pallickara, Ahmet Uyar, Choonhan Youn, Grid Services for Earthquake Science, Concurrency and
Computation: Practice and Experience in ACES Special Issue, 14, 371-393, 2002.
http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc

16) W3C Web Services at http://www.w3.org/2002/ws/.
17) Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut "A Web Services Framework for Collaboration

and Audio/Videoconferencing"; proceedings of 2002 International Conference on Internet Computing
IC'02: Las Vegas, USA, June 24-27, 2002. http://grids.ucs.indiana.edu/ptliupages/publications/intl-
sub03.pdf

18) Hasan Bulut, Geoffrey Fox, Shrideep Pallickara,Ahmet Uyar and Wenjun Wu, Integration of
NaradaBrokering and Audio/Video Conferencing as a Web Service IASTED International Conference
on Communications, Internet, and Information Technology, November 18 to November 20, 2002, in
St.Thomas, US Virgin Islands.
http://grids.ucs.indiana.edu/ptliupages/publications/AVOverNaradaBrokering.pdf

19) Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A Scaleable Event Infrastructure for Peer to Peer
Grids”, proceedings of 2002 Java Grande/ISCOPE Conference, Seattle, November 2002, ACM Press,

 9

http://www.gridforum.org/
http://www.teragrid.org/
http://www.escience-grid.org.uk/
http://www.globus.org/
http://gnutella.wego.com/
http://www.jxta.org/
http://www.sun.com/jini
http://grids.ucs.indiana.edu/ptliupages/publications/spectsescience.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf

 10

ISBN 1-58113-599-8, pages 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc

20) OASIS Web Services for Remote Portals (WSRP) and Web Services for Interactive Applications
(WSIA) http://www.oasis-open.org/committees/

21) Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun Wang, Xiaohong Qiu, Ubiquitous Access for
Collaborative Information System using SVG, Proceedings of SVGopen conference July 2002, Zurich,
Switzerland. http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/draft.pdf

22) W3C Scalable Vector Graphics (SVG) version 1.0 Specification http://www.w3.org/TR/SVG/.
23)
24)

Batik project at: http://xml.apache.org/batik.
W3C Document Object Model (DOM) Level 2 Core Specification http://www.w3.org/TR/DOM-
Level-2-Core/

25) W3C Document Object Model (DOM) Level 1 Specification at http://www.w3.org/TR/REC-DOM-
Level-1/.

26) W3C Document Object Model (DOM) Level 2 Events Specification at http://www.w3.org/TR/DOM-
Level-2-Events/.

27) Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi Lee on Integration of Hand-
Held Devices into Collaborative Environments at
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/PDA_IC2002.pdf . Proceedings of the
2002 International Conference on Internet Computing (IC-02) Volume 2 pp. 231-238.

28) W3C WSDL version 1.2 at http://www.w3.org/TR/2003/WD-wsdl12-20030124/.
29)
30)
31)

A Goldberg. “Smalltalk-80: The Interactive Programming Environment”. Addison Wesley, 1984.
 G. Lee, “Object oriented GUI application development”. Prentice Hall, 1994. ISBN: 0-13-363086-2.
The MVC framework and Microsoft Windows at
http://infolab.kub.nl/pub/theses/w3thesis/Prototype/mvc.html

32) Explore the underpinnings of the JFC's Swing components at
http://www.javaworld.com/javaworld/jw-04-1998/jw-04-howto.html

http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc
http://www.oasis-open.org/committees/
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/draft.pdf
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/PDA_IC2002.pdf
http://www.w3.org/TR/2003/WD-wsdl12-20030124/
http://infolab.kub.nl/pub/theses/w3thesis/Prototype/mvc.html
http://www.javaworld.com/javaworld/jw-04-1998/jw-04-howto.html

	1 Introduction

