Towards Energy Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS

Author: Lizhe Wang, Gregor von Laszewski, Jai dayal
Speaker: Jong Youl Cho
Community Grids Lab, Indian University
Outlook

• Background
• Problem definition
• Proposed algorithm
• Evaluation
• Conclusion
Background

• Parallel task scheduling
 – Static scheduling
 – Dynamic scheduling
• Dynamic voltage and frequency scaling (DVFS)
• Power aware task scheduling with DVFS
DVFS model

\[V = \bigcup_{1 \leq m \leq M} \{v_m\} \] \hspace{1cm} (1)

\[F = \bigcup_{1 \leq m \leq M} \{f_m\} \] \hspace{1cm} (2)

where,

- v_m is the m-th processor operating voltage;
- f_m is the m-th processor operating frequency;
- $v_{\text{min}} = v_1 \leq v_2 \leq \ldots \leq v_M = v_{\text{max}}$;
- $f_{\text{min}} = f_1 \leq f_2 \leq \ldots \leq f_M = f_{\text{max}}$;
- $1 \leq m \leq M$, M is the total number of processor operating points.
Energy model

The energy consumption

\[\xi = \sum_{\Delta t} (\delta \cdot v^2 \cdot f \cdot \Delta t) \]

(8)

Where,
\(\delta \) is a constant determined by the PE.
\(v \) is the processor operating voltage during \(\Delta t \);
\(f \) is the processor operating frequency during \(\Delta t \);
\(\Delta t \) is a time period.
Cluster model

- \(p_{e_k} \cdot v^{op} \in V \) is the processor operating voltage
- \(p_{e_k} \cdot f^{op} \in F \) is the processor operating frequency

1 \(\leq k \leq K \), \(K \) is the total number of PEs.

A cluster \(C \) is defined by its set of processing elements

\[
C = \bigcup_{1 \leq k \leq K} \{p_{e_k}\} \tag{9}
\]
Job model

DAG model: $T = (J, E)$

$$J = \bigcup_{1 \leq n \leq N} \{job_n\}$$ \hspace{1cm} (10)

A job, job_n, has 3 properties:
- $weight$ is the instruction number of job_n.
- t^{st} is the starting time of job_n.
- t is the execution time of job_n. If job_n is executed on pe_k, the job execution time is calculated as follows:

$$job_n.t = \frac{job_n.weight \cdot CPI}{pe_k.f^{op}}$$ \hspace{1cm} (11)
Job model

- \(E \): a set of precedence constraints (edges in a DAG).
 \(E \) defines partial orders (operational precedence constraints) on \(J \). \(e_{ij} \) is an edge between \(job_i \) and \(job_j \), it means that \(job_i \) must be completed before \(job_j \) can begin,
 \(1 \leq i, j \leq N, job_i, job_j \in J \). \(e_{ij} \) sometime can also be represented \(job_i < job_j \).

 \(e \) has one property:
 \(e_{ij}.cost \geq 0 \), is the amount of data required to be transferred from \(job_i \) to \(job_j \), \(1 \leq i, j \leq N, job_i, job_j \in J \). Data are transferred from the PE where \(job_i \) is executed to the PE where \(job_j \) is executed.
Problem definition (1)

• Problem 1: Best-effort scheduling
 – Schedule parallel tasks to a cluster
 – Minimize the makespan
 – Reduce energy consumption without increasing the makespan
Problem definition (2)

• energy-performance tradeoff scheduling
 – Users can adopt some performance loss, for example, increase the makespan
 – Schedule tasks to a cluster, minimize the energy consumption
Best Effort Scheduling Algorithm (1)

• schedule tasks via the ETF scheduling algorithm
• scale down PE’s voltages for all non-critical jobs
ETF scheduling algorithm

• ETF: Early task first algorithm
• Compute priorities for all tasks
 – Currently we use b_level, which is the long length from a task to the exist node
• Sort all tasks
• Put tasks that ready to execute in the ready queue with task priority
• Select the first task from ready queue
• Select a resource for this task, so as to give the earliest task finish time
• Loop this scheduling till all tasks are scheduled
Scale down non-critical tasks

- for all PEs
 - for all time slots in this PE
 - If this time slot executes a communication or this time slot is idle
 - Then scale down the voltage of this PE in this time slot
 - If this time slot execute a non-critical task
 - Then scale down the voltage of this PE in this time slot
Example DAG

- A
- B
- C
- D
- E
- F
Energy-performance tradeoff scheduling algorithm

• Execute Early task first algorithm (ETF)
• Scale down PE’s voltages for critical tasks with the predefined acceptable performance loss rate.
• Scale down PE’s voltages for non-critical jobs
Evaluation (1)

• Simulation study:
 – MT43 processor
 – Use synthetic DAG generation tool

• Results

<table>
<thead>
<tr>
<th>Energy aware DAG scheduling algorithm</th>
<th>Maximum energy saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>EADUS & TEBUS [28]</td>
<td>16.8%</td>
</tr>
<tr>
<td>Energy Reduction Algorithm [31]</td>
<td>25%</td>
</tr>
<tr>
<td>LEneS [22]</td>
<td>28%</td>
</tr>
<tr>
<td>ECS [30]</td>
<td>38%</td>
</tr>
<tr>
<td>Our algorithm</td>
<td>44.3%</td>
</tr>
</tbody>
</table>
Result(2)
Conclusion and future work

• We study energy aware cluster scheduling algorithms
• Two research issues are studied
 – Best-effort scheduling issue
 – Energy-performance tradeoff issue
• We proposed two algorithms
• Future work
 • Workload characterization
 • Runtime support and implementation