MapReduce for Data Intensive Scientific Analyses

Jaliya Ekanayake
Shrideep Pallickara
Geoffrey Fox

Department of Computer Science
Indiana University Bloomington, IN, 47405
Presentation Outline

• Introduction
• MapReduce and the Current Implementations
• Current Limitations
• Our Solution
• Evaluation and the Results
• Future Work and Conclusion
Data/Compute Intensive Applications

• Computation and data intensive applications are increasingly prevalent

• The data volumes are already in peta-scale
 – High Energy Physics (HEP)
 • Large Hadron Collider (LHC) - Tens of Petabytes of data annually
 – Astronomy
 • Large Synoptic Survey Telescope - Nightly rate of 20 Terabytes
 – Information Retrieval
 • Google, MSN, Yahoo, Wal-Mart etc..

• Many compute intensive applications and domains
 – HEP, Astronomy, chemistry, biology, and seismology etc..
 – Clustering
 • Kmeans, Deterministic Annealing, Pair-wise clustering etc...
 – Multi Dimensional Scaling (MDS) for visualizing high dimensional data
Composable Applications

• How do we support these large scale applications?
 – Efficient parallel/concurrent algorithms and implementation techniques

• Some key observations
 – Most of these applications are:
 • A Single Program Multiple Data (SPMD) program
 • or a collection of SPMDs
 – Exhibits the **composable** property
 • Processing can be split into small sub computations
 • The partial-results of these computations are merged after some post-processing
 • Loosely synchronized (Can withstand communication latencies typically experienced over wide area networks)
 • Distinct from the closely coupled parallel applications and totally decoupled applications

 – With large volumes of data and higher computation requirements, even closely coupled parallel applications can withstand higher communication latencies?
The Composable Class of Applications

Composable class can be implemented in high-level programming models such as MapReduce and Dryad.
“MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key.”

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
The framework supports:

- Splitting of data
- Passing the output of map functions to reduce functions
- Sorting the inputs to the reduce function based on the intermediate keys
- Quality of services

MapReduce

Data is split into m parts

1. Map function is performed on each of these data parts concurrently

2. \textit{map} function is performed on each of these data parts concurrently

3. A hash function maps the results of the map tasks to r \textit{reduce} tasks

4. Once all the results for a particular \textit{reduce} task is available, the framework executes the \textit{reduce} task

5. A \textit{combine} task may be necessary to combine all the outputs of the reduce functions together
Hadoop Example: Word Count

E.g. Word Count

map(String key, String value):
 // key: document name
 // value: document contents

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts

- Task Trackers
 Execute Map tasks
- Output of map tasks are written to local files
- Retrieve map results via HTTP
- Sort the outputs
- Execute reduce tasks
Current Limitations

• The MapReduce programming model could be applied to most composable applications but;
 • Current MapReduce model and the runtimes focus on “Single Step” MapReduce computations only
 • Intermediate data is stored and accessed via file systems
 • Inefficient for the iterative computations to which the MapReduce technique could be applied
• No performance model to compare with other high-level or low-level parallel runtimes
CGL-MapReduce

- A streaming based MapReduce runtime implemented in Java
- All the communications (control/intermediate results) are routed via a content dissemination network
- Intermediate results are directly transferred from the map tasks to the reduce tasks – **eliminates local files**
- MRDriver
 - Maintains the state of the system
 - Controls the execution of map/reduce tasks
- User Program is the **composer** of MapReduce computations
- Support both **single step** and **iterative** MapReduce computations

Architecture of CGL-MapReduce
CGL-MapReduce - The Flow of Execution

1. Initialization
 - Start the map/reduce workers
 - Configure both map/reduce tasks (for configurations/fixed data)

2. Map
 - Execute map tasks passing <key, value> pairs

3. Reduce
 - Execute reduce tasks passing <key, List<values>>

4. Combine
 - Combine the outputs of all the reduce tasks

5. Termination
 - Terminate the map/reduce workers

Initialization
- Start the map/reduce workers
- Configure both map/reduce tasks (for configurations/fixed data)

Map
- Execute map tasks passing <key, value> pairs

Reduce
- Execute reduce tasks passing <key, List<values>>

Combine
- Combine the outputs of all the reduce tasks

Termination
- Terminate the map/reduce workers
HEP Data Analysis

- Hadoop and CGL-MapReduce both show similar performance
- The amount of data accessed in each analysis is extremely large
- Performance is limited by the I/O bandwidth
- The overhead induced by the MapReduce implementations has negligible effect on the overall computation

Data: Up to 1 terabytes of data, placed in IU Data Capacitor
Processing: 12 dedicated computing nodes from Quarry (total of 96 processing cores)

MapReduce for HEP data analysis
HEP Data Analysis Scalability and Speedup

Execution time vs. the number of compute nodes (fixed data)

- 100 GB of data
- One core of each node is used (Performance is limited by the I/O bandwidth)
- Speedup = MapReduce Time / Sequential Time
- Speed gain diminish after a certain number of parallel processing units (after around 10 units)

Speedup for 100GB of HEP data
MapReduce for Kmeans Clustering

- All three implementations perform the same Kmeans clustering algorithm
- Each test is performed using 5 compute nodes (Total of 40 processor cores)
- CGL-MapReduce shows a performance close to the MPI implementation
- Hadoop’s high execution time is due to:
 - Lack of support for iterative MapReduce computation
 - Overhead associated with the file system based communication
Overheads of Different Runtimes

Overhead \(f(P) = \frac{[P \cdot T(P) - T(1)]}{T(1)} \)

\(P \) - The number of hardware processing units
\(T(P) \) – The time as a function of \(P \)
\(T(1) \) – The time when a sequential program is used (\(P=1 \))

- Overhead diminishes with the amount of computation
- Loosely synchronous MapReduce (CGL-MapReduce) also shows overheads close to MPI for sufficiently large problems
- Hadoop’s higher overheads may limit its use for these types (iterative MapReduce) of computations
More Applications

- Matrix multiplication - iterative algorithm
- Histogramming words - simple MapReduce application
- Streaming approach provide better performance in both applications

Our results show the converging results for different runtimes.

The right hand side graph could be a snapshot of this convergence path.

Easiness to program could be a consideration.

Still, threads are faster in shared memory systems.

Conclusions

- Given sufficiently large problems, all runtimes converge in performance
- Streaming-based map reduce implementations provide faster performance necessary for most *composable* applications
- Support for iterative MapReduce computations expands the usability of MapReduce runtimes
Future Work

• Research on different fault tolerance strategies for CGL-MapReduce and come up with a set of architectural recommendations
• Integration of a distributed file system such as HDFS
• Applicability for cloud computing environments
Questions?

Thank You!
Links

• **Hadoop vs. CGL-MapReduce**
 – Is it fair to compare Hadoop with CGL-MapReduce?
• **DRYAD**
• **Fault Tolerance**
• **Rootlet Architecture**
• **Nimbus vs. Eucalyptus**
Hadoop vs. CGL-MapReduce

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hadoop</th>
<th>CGL-MapReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Language</td>
<td>Java</td>
<td>Java</td>
</tr>
<tr>
<td>Other Language Support</td>
<td>Uses Hadoop Streaming (Text Data only)</td>
<td>Requires a Java wrapper classes</td>
</tr>
<tr>
<td>Distributed File System</td>
<td>HDFS</td>
<td>Currently assumes a shared file system between nodes</td>
</tr>
<tr>
<td>Accessing binary data from other languages</td>
<td>Currently only a Java interface is available</td>
<td>Shared file system enables this functionality</td>
</tr>
<tr>
<td>Fault Tolerance</td>
<td>Support failures of nodes</td>
<td>Currently does not support fault tolerance</td>
</tr>
<tr>
<td>Iterative Computations</td>
<td>Not supported</td>
<td>Supports Iterative MapReduce</td>
</tr>
<tr>
<td>Daemon Initialization</td>
<td>Requires ssh public key access</td>
<td>Requires ssh public key access</td>
</tr>
</tbody>
</table>

![Graph showing Overhead vs. Number of 2D Data Points (millions)](image)

![Diagram of Compute Cluster](image)

![Diagram of Content Dissemination Network](image)
Is it fair to compare Hadoop with CGL-MapReduce?

- Hadoop access data via a distributed file system
- Hadoop stores all the intermediate results in this file system to ensure fault tolerance
- Is this the optimum strategy?
- Can we use Hadoop for only “single pass” MapReduce computations?
- Writing the intermediate results at the Reduce task will be a better strategy?
 - Considerable reduction in data from map -> reduce
 - Possibility of using duplicate reduce tasks
Fault Tolerance

• Hadoop/Google Fault Tolerance
 – Data (input, output, and intermediate) are stored in HDFS
 – HDFS uses replications
 – Task tracker is a single point of failure (Checkpointing)
 – Re-executing failed map/reduce tasks

• CGL-MapReduce
 – Integration of HDFS or similar parallel file system for input/output data
 – MRDriver is a single point of failure (Checkpointing)
 – Re-executing failed map tasks (Considerable reduction in data from map -> reduce)
 – Redundant reduce tasks

• Amazon model S3, EC2 and SQS
 – Reliable Queues
The computation is structured as a directed graph
A Dryad job is a graph generator which can synthesize any directed acyclic graph
These graphs can even change during execution, in response to important events in the computation
Dryad handles job creation and management, resource management, job monitoring and visualization, fault tolerance, re-execution, scheduling, and accounting
How to support iterative computations?