Compile-time Inter-query Dependence Analysis*

Srinivasan Parthasarathy, Wei Li, Michal Cierniak, Mohammed Javeed Zaki

Department of Computer Science, University of Rochester, Rochester, NY 14627-0226
{srini,wei,cierniak,zaki}@cs.rochester.edu

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 598
November 1995

Abstract

Most parallel databases exploit two types of parallelism: *intra-query* parallelism and *inter-transaction* concurrency. Between these two cases lies another type of parallelism: *inter-query* parallelism within a transaction or application. Exploiting inter-query parallelism requires either compiler support to automatically parallelize the existing *embedded* query programs, or programming support to write explicitly parallel query programs.

In this paper, we present compiler analysis to automatically detect parallelism in the *embedded query programs*. We present compiler dependence test algorithms for detecting both *internal* and *external* dependences. We show that the properties of some special functions such as MIN and MAX can help reduce dependences. Finally, we discuss the potential use of dependences to improve the performance of embedded query application programs.

Keywords: Inter-Query Parallelism, Embedded SQL, Dependence Analysis.

*The University of Rochester Computer Science Department supported this work.

"This work was supported in part by an NSF Research Initiation Award (CCR-9409120) and ARPA contract F19628-94-C-0057."
1 Introduction

Traditional mainframe databases are being replaced by highly parallel database systems. Most parallel databases exploit two types of parallelism: intra-query parallelism and inter-transaction parallelism. Intra-query parallelization improves the execution time of complex queries by executing the query operations in parallel. Inter-transaction parallelization improves the throughput of the database system by executing queries from multiple transactions in parallel.

Between these two cases lies another type of parallelism: inter-query parallelism within a transaction or application. Exploiting inter-query parallelism requires either compiler support to automatically parallelize the existing embedded query programs, or programming support to write or rewrite explicitly parallel query programs.

Parallel databases have been an active research area. DeWitt and Gray [7] gives an excellent overview of the state of research on parallel database systems. They considered “Application Program Parallelism” as one of the future research problems. They stated that, “The parallel database systems offer parallelism within the database system. Missing are the tools to structure application programs to take advantage of parallelism inherent in these parallel systems.”

While there has been much research on (intra-)query optimizations for parallel processors [8, 15] and concurrency between transactions [3], little work has been done on inter-query parallelization within a transaction or application. Karabeg and Vianu [11] presented algorithms for maximizing the degree of parallelism of straight-line code within parallel transactions. As far as we know, no work on embedded query programs has been done.

In the area of parallelizing compilers, dependence analysis of sequential programs has been widely studied in the high performance computing research community. However, the data dependence analysis tests are usually designed for array-based programs [2, 13] or pointer-based programs [9, 10].

In this paper, we show that a compiler can automatically detect parallelism in the embedded query programs. Our main contributions are summarized below.

- We formulate the dependence problem, and categorize the dependences into internal and external dependences.
- We present two compiler dependence tests for detecting internal and external dependences.
- We show that the use of special functions such as MIN and MAX can help reduce dependences.

This paper is organized as follows. First, we give the problem formulation for dependence analysis of queries in Section 2. In Section 3, we propose a model of representing SQL queries in terms of Read/Write sets. In the next sections, we present two dependence tests. The test for internal dependences is described in Section 4, and the test for external dependences
is in Section 5. In Section 6, we show that the properties of special functions can be used to improve the dependence analysis. Examples of dependence analysis of programs from the TPCC benchmark are included in Section 7. Given the independence/dependence between queries, we discuss potential optimizations that can be performed on embedded query application programs to improve parallelism in Section 8.

2 Problem Formulation

Reads and writes to the same object and uses of the same value may result in *dependencies* between queries. The objects may be either records in the database or variables in the host language. If there is a dependence between two queries, the compiler must preserve the original order. If, on the other hand, the compiler can prove that two queries are independent, we are guaranteed the correct result no matter in which order those two queries are executed.

Proving that two queries are independent enables many powerful inter-query optimizations. These include standard compiler optimizations which have been used in general purpose programming languages. All these techniques can be applied to embedded query languages as well.

In our model we consider SQL queries embedded within a host language. This provides mechanisms not available in SQL (e.g., control flow). Because of the presence of both the host language and the query language, we define two types of dependences: *internal dependence* and *external dependence*. An internal dependence is a dependence between two queries that access the same set of records in the database, where one of the shared records is written. An external dependence is a dependence between two queries that share the same host-language variables, where one of the variables is written.

The dependences between queries are represented with a *dependence graph*. The dependence graph contains a vertex for every query in the program and a directed edge between vertices \(a \) and \(b \) if there is a dependence between queries \(a \) and \(b \). We initialize the graph so that there is an edge between any two queries which operate on the same table. There are no edges between queries operating on different tables. The we use internal dependence analysis to eliminate as many edges as possible between the queries in the same table, and we use the external dependence analysis to add all external dependences between queries operating on different tables, which have to be preserved to maintain the semantics of the original program.

The algorithms for building precise dependence graphs between queries are the focus of our paper. The following sections show how we deal with each of the dependences. Section 4 describes how to detect internal dependences, and Section 5 shows how to find external dependences.

3 Query Model

In this section, we present the model which we use to represent standard SQL queries. This model allows us to easily extract read and write information about the table attributes or program variables.
3.1 Assumptions

We enumerate below our assumptions, before looking at the models for each of the base query classes, in the following subsections.

1. We assume that queries are in SQL format. We believe our work can be generalized to any query language. However, for the sake of conciseness, we choose SQL as our base query language [6].

2. We model the four common SQL queries – Select, Update, Delete and Insert. Our representation can be extended to handle Join, Project, Open, Fetch, Close, and cursor related operations, which are all similar to the Select query.

3. We also allow queries to contain standardized functions like COUNT, SUM, AVG, MAX and MIN. This is further discussed in Section 6.

In the subsequent sections, we refer to a conditional term as an expression of the form

\[h(A_1, \cdots, A_n) \oplus f(v_1, \cdots, v_m, c_1, \cdots, c_r) \]

(1)

where \(\oplus \) can be any relational operator in the set \(\mathcal{R} = \{=, \neq, <, \leq, >, \geq \} \), \(A_i \) belongs to the set of attributes (columns) of a table, \(v_k \) belongs to the set of variables, \(c_r \) belongs to the set of constants, and \(h, f \) are functions.

We define a condition as one or more conditional terms connected by any of the logical operators in the set \(\mathcal{S} = \{\land, \lor, \neg\} \), which correspond to and, or, and not respectively. Notice that the \(\neg \) can always be “pushed-in” inside a conditional term, for example, \(\neg(A_1 < 5) \) is equivalent to \((A > 5) \lor (A = 5)) \), so henceforth, we will not consider the logical operator not. Even among the relational operators, since \(\leq \) and \(\geq \) can be written in terms of \(=, <, \) and \(> \), we will assume that \(\mathcal{R} = \{=, \neq, <, >\} \). We say that a condition is satisfiable if there is a record in the table for which the condition holds true.

3.2 Model for Select

The fundamental retrieval operation in SQL is the mapping, represented syntactically as a Select-Into-From-Where block. We model the Select operation by grouping the variables in the operation according to whether they are defined or used. We further separate them into two groups according to whether they are program variables (external), or part of the database (internal), that is, accessible only by queries. The Select operation can be modeled as shown in figure 1, and 2.

The Read-Write representation can be explained as follows:

- **Read External** = \{ item _k \}, refers to all the program variables \(item_k \), external to the query, that are used in the condition \(C \). These are the program variables read by the query.

- **Write External** = \{ item _i \}, refers to all the program variables \(item_i \), external to the query, that are defined by the query.
Select $attr_h$
Into $item_i$
From $table_j$
Where C /* C is a condition*/

Figure 1: Example of Select

Read _External_ = \{ $item_k$ \}
Write _External_ = \{ $item_i$ \}
Read _Internal_ = C
Write _Internal_ = \emptyset

Figure 2: Read-Write Representation of Select

- **Read _Internal_** = C. For notational efficacy we use the condition C to be equivalent to the set \{ $R | R \in Table_j \land R$ satisfies C \}, where R is a record, i.e., the set of all records satisfying condition C. At this time, we restrict our attention to the whole record in a table. We plan to relax this to consider individual attributes separately, as part of future work.

- **Write _Internal_** = \emptyset refers to the fact that no database table entry is written to.

We do not elaborate the representation of each set in the other cases as they are similar to the above.

3.3 Model for Update

The main modification operation in SQL is the Update operation. This is represented syntactically as an **Update-Set-Where** block.

We model the Update operation as described in figures 3, 4.

Update $Table_j$
Set $attr_h = f(item_i, attr_h)$
Where C

Figure 3: Example of Update

The key difference in the representation of the Update operation is the presence of two write sets, **Write _Internal_** Pre and **Write _Internal_** Post. The first set describes the set of records that are to be updated, and the second set describes the set of records obtained after
applying the update operation. The rationale for having two sets is that an update may modify an attribute that is part of the Where condition, potentially changing the condition. Note that the Write\textsubscript{Internal_Post} set is a conservative estimate, for the records which had the same values prior to the update are also included in the set.

3.4 Model for Insert

The Insert operation used to add an entry to the database. This operation is represented syntactically as an Insert-Into-Values block.

Insert can be modeled as described in figures 5, and 6.
3.5 Model for Delete

The Delete operation is used to delete a record from the database. This operation is represented syntactically as a **Delete-Where** or **Delete** block. Delete can be modeled as depicted in figures 7, and 8.

![Delete Table]

Figure 7: Example of Delete

```
ReadExternal = \{ item \}
WriteExternal = \emptyset
ReadInternal = C
WriteInternal = C
```

Figure 8: Read-Write Representation of Delete

4 Test for Internal Dependences

In this section we present an algorithm to test for internal database dependence between any two queries.

4.1 Overview

The internal dependence test starts by constructing the ReadInternal and WriteInternal sets for each query, as defined in Section 3. Recall that we use the condition interchangeably with the set of records satisfying the condition, so let CR_i refer to the ReadInternal condition, and CW_i to the WriteInternal condition, for query i.

We say that a pair of conditions, C_i and C_j, is *incompatible*, if the conjunction of the pair, denoted by $\phi = (C_i \land C_j)$, is unsatisfiable, otherwise we say that the pair is *compatible*. We say that there is an *internal dependence* between a pair of queries iff,

1. $(CW_1 \land CR_2)$ is compatible, or
2. $(CR_1 \land CW_2)$ is compatible, or
3. $(CW_1 \land CW_2)$ is compatible,
where query 1 is executed before query 2, denoted by query 1 < query 2. Otherwise, we assume that the two queries are internally independent. For Update queries, we use \(CW_{post} \) if it is query 1, and we use \(CW_{pre} \) if it is query 2, instead of simply using \(CW \).

Since we start with a complete graph of dependences between any two queries which operate on the same table, we proceed by examining each possible pair of queries in turn, and try to eliminate the dependence edge from the graph, if we can establish that the two queries are internally independent.

Before we test for compatibility between the read and write conditions of different queries, we convert \(\phi \), the conjunction of the two conditions, into disjunctive normal form (DNF). Recall that \(\phi \) is in disjunctive normal form if \(\phi = \bigvee_{i=1}^{n} \phi_i \), where \(\bigvee_{i=1}^{n} \phi_i \) stands for \((\phi_1 \lor \phi_2 \lor \cdots \lor \phi_n) \). Each \(\phi_i = \bigwedge_{j=1}^{m_i} t_j \), where \(t_j \) is a conditional term. For example, if \(C_1 = ((x > 5) \lor (y \neq 1)) \) and \(C_2 = ((x < 5) \land (y = 1)) \), then \(\phi = [C_1 \land C_2] = [((x > 5) \lor (y \neq 1)) \land ((x < 5) \land (y = 1))] \), and DNF(\(\phi \)) = \(((x > 5) \land (x < 5) \land (y = 1)) \lor ((y \neq 1) \land (x < 5) \land (y = 1)) \). To determine the incompatibility of the pair of conditions forming \(\phi \), we have to make sure that each of the \(\phi_i \) is unsatisfiable, or conversely if any \(\phi_i \) is satisfiable, then we conclude that the two conditions are compatible.

We now formulate a method of solving or establishing the incompatibility of a pair of conditions. We will first consider the simple case where we only have conditional terms of the form \((a_1 A_1 + a_2 A_2 + \cdots + a_n A_n) \oplus a_0 \), where \(\oplus \in \mathbb{R} \), \(A_i \) are attributes, and \(a_i \) are constants, i.e. where \(h \) is a linear function of the attributes of the table. Note that in the cases where arithmetic operations do not make sense, for example in the case of strings, we only consider terms of the form \(A_i = a_0 \) or \(A_i \neq a_0 \). Later in the section, we will discuss how to extend it for the more general case involving variables. We do, however, restrict our attention to linear functions of attributes, variables or constants.

4.2 Grouping inter-related terms

We say that the term \(t_i \) is inter-related to term \(t_j \), if \(\exists \) an attribute \(A \), such that \(A \) occurs in both \(t_i \) and \(t_j \), and we define the notion of grouping within each \(\phi_i \) as the process of forming the set of inter-related terms. After grouping within each \(\phi_i \), we have \(\phi_i = \bigwedge_{j=1}^{u_i} \phi_{ij} \), where each group \(\phi_{ij} = \bigwedge_{k=1}^{m_{ij}} t_k \), is a conjunction of inter-related terms, \(t_k \). We observe that only terms that are inter-related, i.e., those which make up a group, need to be checked for contradictions. For example, let \(\phi_i = [(\text{NAME} = \text{SAM}) \land (\text{SAL} > 20K) \land (\text{NAME} \neq \text{SAM})] \). After grouping inter-related terms, we have, \(\phi_{i1} = [(\text{NAME} = \text{SAM}) \land (\text{NAME} \neq \text{SAM})] \), and \(\phi_{i2} = (\text{SAL} > 20K) \). The attribute \(\text{SAL} \) cannot have any influence on the satisfiability of group \(\phi_{i1} \). So we consider each group, \(\phi_{ij} \), separately, and if any group is unsatisfiable, \(\phi_i \) is unsatisfiable. Conversely, if all groups are satisfiable, then \(\phi_i \) is satisfiable.

4.3 Simple tests

From our example above, in the absence of knowledge of the state of the database, we must assume that the conditional term \((\text{SAL} > 20K) \) is satisfiable. In general, we can eliminate any group which has only one term in it, by safely assuming that it is true. Moreover, in cases where the domain of values for an attribute is non-numeric, we can simply check
for compatibility by comparing the constant values for the attributes in the conditional term. In the example above, by comparing the values of \textit{NAME}, we can quickly establish a contradiction.

Once the groups have been formed, our simple tests comprises of eliminating all groups having only one term, and groups which have attributes with non-numeric domains are tested for unsatisfiability by simple comparisons among the terms comprising the group. We now concern ourselves with groups having terms with affine expressions.

4.4 Linear test

The fact that we can replace \((x = y)\) with \([x \geq y] \land (x \leq y)\), and \((x \neq y)\) with \([x > y] \lor (x < y)\], combined with the conjunctive form of \(\phi_{ij}\), allows us to consider each group not eliminated by the simple tests, as a system of linear inequalities, which can be solved for solutions by using the Fourier-Motzkin Elimination method [5]. Consider the following system of \(m\) linear inequalities in \(n\) unknowns, formed from the terms within a group, where the attributes, \(A_{ij}\), are unknowns, and \(a_{ij}\) are constants:

\[
\sum_{j=1}^{n} a_{ij} A_{j} \leq a_{0j}, i = (1, \ldots, m)
\]

This method proceeds by eliminating one unknown at a time, by first rewriting each lower and upper bound for that unknown, and then comparing each lower bound against each upper bound, and obtaining a new system of inequalities not involving that unknown. For example, the above system of linear inequalities can be partitioned into the three sets:

\[
A_{n} \leq U_{i}(A_{1}, A_{2}, \ldots, A_{(n-1)}), i = (1, \ldots, r)
\]
\[
A_{n} \geq L_{j}(A_{1}, A_{2}, \ldots, A_{(n-1)}), j = (1, \ldots, s)
\]
\[
0 \leq O_{k}(A_{1}, A_{2}, \ldots, A_{(n-1)}), k = (1, \ldots, t)
\]

where \(U_{i}\) denotes all the upper-bounds, \(L_{j}\) denotes all the lower-bounds for \(A_{n}\), and \(O_{k}\) denotes inequalities not involving \(A_{n}\). After eliminating \(A_{n}\), we get the new set of inequalities,

\[
L_{j}(A_{1}, A_{2}, \ldots, A_{(n-1)}) \leq U_{i}(A_{1}, A_{2}, \ldots, A_{(n-1)})
\]
\[
0 \leq O_{k}(A_{1}, A_{2}, \ldots, A_{(n-1)})
\]

We repeat this process until a contradiction is reached, or we eliminate all unknown variables, in which case the system must have a real solution.

Handling symbolic terms Our formulation above can easily be extended to solve for the general conditional terms of the form shown in equation 1. While previously, we considered the unknowns to be only the attributes of tables, we now relax this condition, and allow variables to be unknowns too, obtaining the following system of linear inequalities

\[
\sum_{j=1}^{n} a_{ij} D_{j} \leq a_{0j}, i = (1, \ldots, m)
\]
where \(D_j \) can be an attribute or a variable. This new system can now be solved by our algorithm to test for compatibility between the two conditions. The complete algorithm is summarized in figure 9.

```
Input: queries \( Q_1, Q_2 \)
Output: Is there an internal dependence between \( Q_1 \) and \( Q_2 \)?
1) for each \( (C_1, C_2) \in \{(CW_1, CR_2), (CR_1, CW_2), (CW_1, CW_2)\} \)
2) let \( \phi = DNF(C_1 \land C_2) = \bigvee_{i=1}^{m} \phi_i \)
3) for each \( \phi_i \), form groups of inter-related terms, \( \phi_i = \bigwedge_{j=1}^{n_i} \phi_{ij} \)
4) for each group, \( \phi_{ij} \), determine satisfiability by
4a) eliminating it if it has only one term, i.e., it is satisfiable
4b) if it has non-numeric attributes, use simple comparison
4c) else apply Fourier-Motzkin Elimination method
/* end for each group, \( \phi_{ij} \). */
5) if any group unsatisfiable, \( \phi_i \) is unsatisfiable.
/* end for each \( \phi_i \). */
6a) if any \( (C_1, C_2) \) compatible, i.e., all groups satisfiable in some \( \phi_i \), return “DEPENDENT”
6b) if all \( (C_1, C_2) \) incompatible, return “INDEPENDENT”
/* end for each \( (C_1, C_2) \). */
```

Figure 9: Algorithm for testing Internal Dependences

5 Test for External Dependences

Information is shared between embedded queries via variables of the host language. Therefore we must know the flow of data in the host language to determine dependences between queries.

5.1 Dataflow Dependence

In addition to dependences between queries caused by conflicting accesses in the database, there are new types of dependences in embedded SQL. The variables of the host language may carry information between two queries thus making the two queries dependent. Consider the following example.

```
SELECT a INTO :a FROM table1 WHERE b = :b;
e = a + 1;
SELECT c INTO :c FROM table2 WHERE d = :c;
```

In this case the two queries access disjoint portions of the database, yet there is a dependence between them, because the value retrieved in the first query is used (indirectly) in the second query.
5.2 Application of Induction Variables

If we can prove that induction variables are different in different iterations of a loop, we can prove independence of queries which use that induction variable to select records. Consider the following example.

```
for i = 1 to n do
    j = j + 3;
    UPDATE table1 SET a = :a WHERE b = :j;
...
end for
```

Without the information that the value of \(j \) is different in every iteration, we would have to assume conservatively that all instances of the query are dependent on each other. However, using dataflow analysis (e.g., FUD chains, cf. Section 5.3) we can prove that all instances are independent and they can be reordered or issued in parallel (assuming no other dependences in the loop).

5.3 Factored Use-Def Chains

For dataflow analysis and for induction variable detection we use factored use-def chains (FUD chains), which are described in detail in Wolfe [17].

For every use of a variable we have a pointer to a unique reaching definition. This is possible because of the introduction of \(\Phi \)-terms [4], which merge conflicting definitions created by control flow. FUD chains not only have desirable properties, but they can also be constructed efficiently with known algorithms.

We use the following notation for FUD chains. Each occurrence of a variable is marked with a unique label. A definition is denoted with that label in the subscript. Each use is marked with its label and another label of the definition which reaches this use. For instance \(K_3 = K_{2,\ast,1} + 2 \) is a definition of variable \(K \) which is labeled \(K_3 \). The use of \(K \) on the right-hand side is labeled \(K_2 \). The definition \(K_1 \) is the reaching definition for \(K_2 \).

To guarantee that there is always at most one definition reaching any use of a variable, we insert \(\Phi \)-terms at control flow convergence points. A \(\Phi \)-term creates a new definition for a variable with multiple definitions reaching that point. Consider the following code fragment.

\[
K_1 = 0
\if ... then
 K_3 = K_{2,\ast,1} + 2
\end if
\Phi(K)_{4,\ast,3,1}
M_1 = K_{3,\ast,4}
\]
Two definitions reach the merge point of control flow after the \texttt{if} statement. A new definition K_4 is inserted to merge definition K_1 and K_3 into one. This causes just one definition of K to reach the use K_5.

Reaching definition information enables straightforward detection of information sharing between two queries.

Induction Variables There is another use of FUD chains which is important to our analysis: detecting induction variables in a loop. After detecting an induction variable, we try to prove that the variable has a different value in every iteration of the loop. If such a proof is possible, we can often show that instances of queries in different loop iterations are independent.

Read and Write Sets In addition to modifications to variables as handled in standard dataflow analysis, we have to consider the \texttt{Read External} and \texttt{Write External} sets defined in Section 3. Every occurrence of a variable in a \texttt{Read External} set is treated as a use of that variable. An occurrence in a \texttt{Write External} set is equivalent to a definition. An example using these sets to find dependences is given in Section 7.

6 Special Functions

In this section we look at ways in which we can identify \textit{distinctly valued} variables in a loop. We define \textit{distinctly valued} variables as those variables that can never have the same value across iterations of a loop. These variables are different from induction variables in the sense that, in the case of induction variables we know the exact function by which we can represent them. In the case of distinctly valued variables we do not know what value they have in a given iteration but we do know that the possible set of values of a distinctly valued variable in iteration i cannot intersect with the possible set of values for the same variable in iteration j.

```sql
for loop
SELECT MIN(key3) INTO Var1
FROM Table1, WHERE p_key1 = value1 and p_key2 = value2
DELETE Table1
WHERE p_key1 = value1 and p_key2 = value2 and key3 = Var1
..... /* segment of loop where Var1 is not defined */
end for loop
```

Figure 10: Example of Distinctly Valued Variables

In the example shown in Figure 10, Var1 is a distinctly valued variable, because the value it is being assigned in the Select statement, is being used to determine the list of records to be deleted. Therefore future iterations can never assign the same value to Var1.
The identification of such variables is important for eliminating possible loop carried dependences.

SQL predefines five functions that can be called from within a Select query. These functions are COUNT (returns the number of values), SUM (returns the sum of the values), AVG (returns the average of the values), MAX (returns the maximum value), and MIN (returns the minimum value). Each of these functions operates on the collection of values in one column of a table, and produces a scalar result. Furthermore, the argument of the function may be preceded by the keyword UNIQUE which means that the argument is a set and duplicate values in the column are not considered.

The importance of these functions lies in the fact that a scalar value is returned, and this scalar depends on the elements that satisfy the where condition of the Select statement. We can generalize the above idea of detecting distinctly valued variables when these functions are used in the Select statement.

In the following discussion we assume that the conditions for the query statements – Select, Delete and Update – are never False, i.e., there is at least one record satisfying the condition. We assume that none of the Insert operations returns an error.

Below we list conditions involving these functions where we may detect possible distinctly valued variables.

- If the Select employs COUNT(Y) INTO X, the selection criteria (Condition) does not depend on the iteration count, and there is a Delete on at least one record that satisfies the Condition then the variable defined by the COUNT function could be distinctly valued.

Similarly if a Select is followed by an Update or Insert which adds a new record that will satisfy Condition then X could be distinctly valued.

- If the Select employs SUM(Y) INTO X, we really cannot do anything as deleting several elements may result in the same original sum (if we delete -2, 3, and -1, the sum remains unchanged). However if we know that the domain of Y is either R^+ or R^- then we can make the same check as for COUNT.

- If the Select employs AVG(Y) INTO X, then deleting records does not help, as the average value could feasibly repeat.

- If the Select employs MIN(Y) (INTO X), the selection criterion (Condition) does not depend on the iteration variable, and there is a Delete on all records that satisfy Condition \wedge MIN(Y), then X could be distinctly valued.

- If the Select employs MAX(Y) (INTO X), the selection criterion (Condition) does not depend on the iteration variable, and there is a Delete on all records that satisfy Condition \wedge MAX(Y), then X could be distinctly valued.

The algorithm for implementing these checks will involve the comparison of pairs of queries on the same table in the database, combined with dataflow analysis.

1 This is however not possible for attributes which are stored as floating point numbers. Finite accuracy results in the possible violation of some mathematical laws. Specifically, for floating point numbers, the following may be true: $a = a + b$ even if $b \neq 0$. Therefore, we apply this rule for fixed point numbers only.
7 TPCC Example

The TPC benchmark C [16] (TPCC) is an OLTP workload. It is a mixture of read-only and update intensive transactions that simulate the activities found in complex OLTP application environments.

In this section we describe an example from TPCC, and show how the tests presented in the previous sections are used to construct the query dependence graph.

Our base algorithm to output the dependence graph is described in Figure 11.

| Step 1: Form the Read/Write sets. |
| Step 2: Test for External Dependences |
| Calculate Factored Use-Def chains. |
| Induction Variable Analysis |
| Dataflow Analysis |
| Step 3: Distinctly Valued Variable Analysis |
| Step 4: Test for Internal Dependences |

Figure 11: Complete Algorithm

We first form the Read-Write representations. These representations are useful for constructing the Factored Use-Def chains. The Factored Use-Def chains can be used for Induction Variable Analysis, Dataflow Analysis and Distinctly Valued Variable Analysis. We distinguish between two kinds of dependences in our approach. Loop independent dependences (LID) are dependences within the same iteration of the loop. Loop carried dependences (LCD) are dependences across iterations. Finally the test for Internal Dependencies uses all the information from the preceding steps to determine loop carried and loop independent dependences.

We now look at the main loop from the Delivery transaction in TPCC, to illustrate the basic idea behind each transformation in the algorithm.

7.1 Example: Delivery Transaction

The example here is the Delivery transaction in TPCC. The basic code is shown in Figure 12.

Read/Write representations

The first step is to transform the queries into their respective Read/Write representations. Figure 13 shows the Read/Write sets for the first Select query in figure 12.

Read_External identifies the program variables \(w_id, no_d_id\) used in the condition \(C\). Write_External identifies the program variable \(no_d_id\) that is defined by the select operation. Read_Internal identifies all records within the Table new_order that satisfy the condition \(C\). Write_Internal is the empty set. The Read/Write sets for the other queries can be constructed similarly.
for (i=1; i <= DISTRICTS_PER_WAREHOUSE; i++) {

 no_d_id = i;

 SELECT MIN(no_id) INTO :no_id
 FROM new_order WHERE no_w_id = :w_id AND no_d_id = :no_d_id;

 DELETE FROM new_order WHERE no_w_id = :w_id
 AND no_d_id = :no_d_id AND no_o_id = :no_o_id;

 UPDATE orders SET o_carrier_id = :o_carrier_id
 WHERE o_id = :no_id AND o_w_id = :w_id AND o_d_id = :no_d_id;

 SELECT o_id INTO :o_id FROM orders
 WHERE o_id = :no_id AND o_w_id = :w_id AND o_d_id = :no_d_id;

 SELECT SUM(ol_amount) INTO :ol_total_amount FROM order_line
 WHERE ol_w_id = :w_id AND ol_d_id = :no_d_id AND ol_o_id = :no_o_id;

 UPDATE order_line SET ol_delivery_d = :curr_mstrftime
 WHERE ol_w_id = :w_id AND ol_d_id = :no_d_id AND ol_o_id = :no_o_id;

 total_amount = (double)ol_total_amount / (double)100.0;

 UPDATE customer
 SET c_balance = c_balance + total_amount, c_delivery_cnt = c_delivery_cnt + 1
 WHERE c_id = :no_id AND c_w_id = :w_id AND c_d_id = :no_d_id;
} /* end for loop */

Figure 12: Main For Loop In Delivery Transaction (TPCC)

Read_External = \{w_id, no_d_id \}
Write_External= \{no_d_id\}
Read_Internal = C where C=\{no_w_id = :w_id \& no_d_id = :no_d_id\}
Write_Internal = \{\}

Figure 13: Read-Write Representation of Select
Test for External Dependences

The first part of the algorithm for this section will identify the scalars present in the loop, and construct the def-use chain of these scalars. The scalars in the for loop are: \textit{i}, \textit{no}_d.id, \textit{no}_o.id, \textit{w}_id, \textit{o}_carrier.id, \textit{oltotal.amount}, \textit{o}_c.id, \textit{currmstamp}, \textit{total.amount}. The variables that are \textbf{defined} within the loop are \textit{i}, \textit{no}_d.id, \textit{total.amount}, \textit{oltotal.amount}, and \textit{no}_o.id.

The resulting def-use chain is shown in Figure 14.

The next step is to identify induction variables. This can be done by examining the def-use chain as described in [17]. The induction variables for this loop are \textit{i}, \textit{no}_d.id.

\begin{verbatim}

\begin{tabular}{|l|}
\hline
\textbf{i} = 1 \\
\textbf{forloop} \\
\Phi(\textbf{i})_{32\sim1,31} \\
\textit{no}_d.id_{3} = \textit{i}_2_{\sim32} \\
\textit{no}_o.id_{7} = \textit{SNOW.ORDER1}(\textit{w}_id_{4\sim\text{NULL}}, \textit{no}_d.id_{5\sim3}, \textit{no}_o.id_{6\sim\text{NULL}}) \\
\textit{DNEW.ORDER2}(\textit{w}_id_{8\sim\text{NULL}}, \textit{no}_d.id_{9\sim3}, \textit{no}_o.id_{10\sim7}) \\
\textit{UORDER3}(w_id_{11\sim\text{NULL}}; \textit{no}_d.id_{12\sim3}, \textit{no}_o.id_{13\sim7}, \textit{o}_carrier.id_{14\sim\text{NULL}}) \\
\textit{o}_c.id_{18} = \textit{SORTERS4}(w_id_{15\sim\text{NULL}}, \textit{no}_d.id_{16\sim3}, \textit{no}_o.id_{17\sim7}) \\
\textit{oltotal.amount}_{23} = \textit{ORDER_LINES5}(w_id_{19\sim\text{NULL}}, \textit{no}_d.id_{20\sim3}, \textit{no}_o.id_{21\sim7}) \\
\textit{ORDER_LINES6}(w_id_{23\sim\text{NULL}}, \textit{no}_d.id_{24\sim3}, \textit{no}_o.id_{25\sim7}, \textit{currmstamp}_{26\sim\text{NULL}}) \\
\textit{total.amount}_{28} = \textit{oltotal.amount}_{27\sim22} \\
\textit{UCUSTOMER7} (\textit{total.amount} _{29\sim28}) \\
\textbf{i} = \textbf{i} + 1 \\
\textbf{end for loop} \\
\hline
\end{tabular}

\end{verbatim}

Figure 14: Resultant Use-Def Chain

Distinctly Valued Variable Analysis

By the method outlined in the Section 6 we can see that there are no Distinctly Valued Variables in the code. \textit{no}_o.id, a likely candidate, is not a distinctly valued variable as the condition of the select operation changes with iteration count.

Test for Internal Dependences

Next we test the internal dependences on each of the digraphs for New.Order, Orders, Order.Line and Customer separately using information obtained from the external dependence test, and Distinctly Valued variable analysis. For example, when testing for dependence between the first Select and Delete operations (in Figure 12) within the same iteration, we see that the Read.Internal Set of the Select operation and Write.Internal Set of the Delete operation are compatible. So there is a loop independent dependence (LID) from the Select operation to the Delete operation. If we look across iterations i.e if we
Figure 15: Phase 1
look at the Delete operation in iteration \(i' \) and the Select operation in iteration \(i \) where \(i > i' \) then the set of common records accessed is empty, as \(\text{no} _ \text{d} _ \text{i} _ \text{d} \) is a basic induction variable and \(\text{no} _ \text{d} _ \text{i} _ \text{d} \) is different for the two iterations. Therefore, there is no loop carried dependence (LCD) between them.

The result is shown in Figure 15A, and is labeled as Initial Query Dependence Graph. We note that there are no dependencies shown in the figure between the two queries to Orders, and the two queries to OrderLine. This is due to the fact that the access set of the respective pairs do not intersect at the attribute level. It is not difficult to extend our model to handle such cases as well.

Finally, we combine information across the different digraphs with the external dataflow dependences, to obtain the complete query dependence graph for the loop in Figure 15B. This is labeled as Final Query Dependence Graph.

8 Optimizations

From the previous sections we have seen how a dependence graph for embedded SQL programs can be generated. Using this dependence graph the compiler can decide to change the execution order of the queries. This can result in two basic types of optimizations: parallel issue of database queries or code motion, i.e., rearranging the order of queries to facilitate further optimizations, or to directly improve performance by overlapping the execution of some queries.

First, in Section 8.1, we present optimizations which can be performed within a basic block. Then, in Section 8.2, we demonstrate optimizations which can be performed on loops. This is an important class of optimizations, as loops occur frequently in embedded SQL transactions.

8.1 Optimizations within a Basic Block

In [11] Karabeg and Vianu present a scheme for scheduling parallel transactions. Our results from the previous sections can be used to perform such a scheduling. The dependence graph defines a partial order on transactions thus enabling the transformations.

8.2 Loop Level Optimizations

Loop Parallelization: It is a fundamental loop optimization. If the dependence graph shows that there are no dependences across iterations, every iteration may be executed in parallel. Other optimizations are discussed below.

Loop Distribution: This is the process of breaking loops into two or more smaller loops. Within the context of embedded SQL programs, the loop distribution enables us to distribute the original loop into a parallel loop and a sequential loop. The basic algorithm involves identifying strongly connected components. Nodes belonging to the same strongly
connected component cannot be placed in separate loops as the resulting dependence would not be legal. Consider the following example.

```sql
for i = 1 to n do
  SELECT MIN(no.w_id) INTO :no.w_id
  FROM new_order WHERE no_w_id = :w_id AND no.w_id = :no.w_id;
  DELETE FROM new_order WHERE no_w_id = :w_id
  AND no.w_id = :no.w_id AND no.m_id = :no.m_id;
```

This loop cannot be directly parallelized. It is however legal to distribute the loop, store the results from the first loop in temporary variables and execute the second loop in parallel. If we expect that the set of results from the loop may be too large to fit into the memory, we should perform loop unrolling before distribution. The result code would be as follows:

```sql
for j = 1 to n step s do
  for i = j to min(n, j+s-1) do
    SELECT MIN(no.w_id) INTO :buf[i-j]
    FROM new_order WHERE no_w_id = :w_id AND no.w_id = :no.w_id;
  for i = j to min(n, j+s-1) do parallel
    DELETE FROM new_order WHERE no_w_id = :w_id
    AND no.w_id = :no.w_id AND no.m_id = :no.m_id;
```

This set of transformations achieves s-way parallelism. We can change s at run-time to use exactly the amount of available parallelism.

Software Pipelining This is a technique [12, 14] for reorganizing loops so that each iteration in the software pipelined code is made from instructions chosen from different iterations of the original loop. The statements from different loop iterations are overlapped to better exploit inter-query parallelism.

9 Conclusions

In this paper, we presented compiler techniques to automatically detect parallelism in the embedded query programs. We formulated the dependence problem, and categorized the dependences into internal and external dependences. Then we described compiler dependence test algorithms for detecting both internal and external dependences. We showed that the properties of some special functions can help reduce dependences. Finally, we discussed the potential use of dependences to improve the performance of embedded query application programs.
References

