Abstract—The ever increasing number of cores per chip will be accompanied by a pervasive data deluge whose size will probably increase even faster than CPU core count over the next few years. This suggests the importance of parallel data analysis and data mining applications with good multicore, cluster and grid performance. This paper considers data clustering, mixture models and dimensional reduction presenting a unified framework applicable to bioinformatics, cheminformatics and demographics. Deterministic annealing is used to lessen effect of local minima. We present performance results on clusters of 2-8 core systems identifying effects from cache, runtime fluctuations, synchronization and memory bandwidth. We discuss needed programming model and compare with MPI and other approaches.

Keywords—parallel; data mining; multicore; clusters; applications; MPI; CCR; performance; cache

I. INTRODUCTION

There are many important trends influencing scientific computing. One is the growing adoption of the eScience paradigm which emphasizes the growing importance of distributed resources and collaboration. Another is the data deluge with new instruments, sensors, and the Internet driving an exponential increase of data and the associated data information knowledge wisdom pipeline which itself derives more bytes to worry about as in the results of simulations [1]. Multicore chips are challenging because they require concurrency to exploit Moore's law whereas the improved architectures and increasing clock speed of the last 15 years has allowed dramatic performance increase within a well established fixed (sequential) programming paradigm [2-4]. Understanding the data deluge is an important problem in all areas of computing from eScience to the commodity computing such as home PC's that are the main driver of the semiconductor industry. Thus we posit that it is important to look at data analysis and data mining and derive efficient multicore implementations. We would like these to be relevant for both eScience and commodity applications. The former could involve data from high throughput instruments used in Life Sciences. The latter includes the analysis of environmental and surveillance monitors or the data fetched from the Internet that could characterize a user's interests. The RMS (Recognition, Mining, Synthesis) analysis from Intel [5, 6] identified data mining and gaming as critical applications for multicore chips. Scientific data is likely to be so voluminous that we need any implementation to work well on clusters of multicore chips with preferably the same programming model for the inter-chip as well as the intra-chip parallelism. On the other hand commodity applications might well not need cluster implementations but probably would prefer thread-based runtimes involving managed code - Java or C#. In most cases the data is likely to be distributed and so good Grid compatibility is an important requirement. High performance (scientific) computing has never had very sophisticated programming environments as the field is not large enough to support a major commercial software activity. Multicore could change the situation because of its broad importance but we then need a scientific computing programming model that is based on one applicable to commodity systems.

Our work is performed on a variety of twin CPU multicore systems defined in Table 1 with a total of 4 or 8 cores (except for single CPU Intel 2a) and running variants of Linux and Windows operating systems. In the following section we briefly discuss our programming model and refer the reader to other papers [10-12] for more details. In section 3, we discuss the data mining algorithms investigated and give some overall performance results. In section 4, we identify the key features of the application structure and the implications for the parallel run time. We compare with other parallel programming approaches. The performance is investigated in more detail in the following sections, 5 for cache and 6 for memory bandwidth effects. Section 7 extends the results to clusters and compares thread and process based parallelism. Section 8 has conclusions.

II. PROGRAMMING MODEL

The trends discussed in the introduction motivate the SALSA (Service Aggregated Linked Sequential Activities) [7] at the Community Grids Laboratory. SALSA is exploring a set of data mining applications implemented in parallel on multicore systems. This is implemented in managed code C# with parallel synchronization from a runtime CCR (Concurrency and Computation Runtime) developed at Microsoft Research [13, 14]. CCR supports both MPI style synchronization and the dynamic threading essential in many concurrent commodity applications. Further there is a service model DSS (Decentralized System Services) built on top of...
CCR [15]. CCR is a possible choice of runtime that could bridge between scientific and commodity applications as it supports the key concurrent primitives used in both of them. SALSA proposes that one builds applications as a suite of services [8, 9] rather than traditional subroutine or class libraries. The service model allows one to support integration within grid, cluster and inter-chip environments. Thus SALSA is exploring a possible future application (data mining) on multicore chips using a programming model that could be used across a broad set of computer configurations and could be the basis of a programming model that links scientific computing to commodity applications. We note that we program in a low level style with user responsible for explicit synchronization in the fashion that is familiar from MPI. There certainly could be general or domain specific higher level environments such as variants of automatic compilation, OpenMP, PGAS or even the new languages from Darpa's HPCS program [6, 16]. Our work can still be relevant as it uses a runtime that is a natural target for such advanced high-level environments.

TABLE I. MACHINES USED

<table>
<thead>
<tr>
<th>Machine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD4</td>
<td>HPxw9300 workstation, 2 AMD Opteron CPUs Processor 275 at 2.19GHz, L2 Cache 2x1MB (for each chip), Memory 4GB, XP Pro 64bit and Server 2003</td>
</tr>
<tr>
<td>Intel8a</td>
<td>Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at 1.86GHz, L2 Cache 2x4M, Memory 8GB, XP Pro 64bit</td>
</tr>
<tr>
<td>Intel8b</td>
<td>Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at 2.66GHz, L2 Cache 2X4M, Memory 4GB, Vista Ultimate 64bit and Fedora 7</td>
</tr>
<tr>
<td>Intel8c</td>
<td>Dell Precision PWS690, 2 Intel Xeon CPUs x5345 2.33GHz, L2 Cache 2X4M, Memory 8GB, Redhat</td>
</tr>
<tr>
<td>Intel2a</td>
<td>Dell PowerEdge 860, single CPU Dual-Core Intel Xeon 3050 2.13 GHz, Memory 2GB, Windows Server 2003 Enterprise x64 Edition (part of 8-node cluster)</td>
</tr>
<tr>
<td>AMD8</td>
<td>Dell PowerEdge 2970, 2 Quad Core Opteron 2356 at 2.3GHz, 4x512KCache, Memory 16GB, Server 2003</td>
</tr>
</tbody>
</table>

A critical question for any system that spans multiple different domains is performance; integration of multiple paradigms is not so helpful unless the performance is reasonable in each paradigm. In previous papers [10-12], we have discussed CCR and DSS and given some core performance measurements that are encouraging. Here we focus on a broader set of applications and discuss in more detail their structure and performance. We see they have a classic loosely synchronous structure [26] and require synchronization similar to that provided by MPI. We explicitly compared [12] the performance of CCR with MPI for a typical "exchange" pattern where each thread (process for MPI) exchanges information with its neighbors in a ring topology. In our implementations, we are however using threads and not processes as the "parallel unit". This approach brings some challenges with efficient use of cache but allows good use of shared memory and link to familiar commodity programming models. We note that our work uses Windows operating systems with Linux only used for (MPI) comparisons [11, 12]. We briefly note how our results extend to Linux and other languages besides C# in section 7.

III. DATA MINING

Before you begin to format your paper, first write and save the content as a separate text file. Keep your text and graphic files separate until after the text has been formatted and styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text headings-the template will do that for you.

In this paper we focus on a set of data mining algorithms given by a common formalism, which is defined by function F given in Equation (1) in terms of N data points $X(x)$ labeled by x.

$$F = -\sum_{i=1}^{N} a(x) \ln Z(x)$$

where

$$Z(x) = \sum_{k=1}^{K} g(k) \exp\left[-0.5(\sum_{i=1}^{N} x - \bar{Y}(k))^2 / (Ts(k))\right]$$

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:

$$a(x) = 1 / N, g(k) = 1, s(k) = 0.5$$

Equation (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:

$$a(x) = 1 / N, g(k) = 1, s(k) = 0.5$$

Figure 1. GTM Projections for 2 clusters found by DA in space of 155 Chemical Properties labeled as . or +

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:

$$a(x) = 1 / N, g(k) = 1, s(k) = 0.5$$

Figure 1. GTM Projections for 2 clusters found by DA in space of 155 Chemical Properties labeled as . or +

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:

$$a(x) = 1 / N, g(k) = 1, s(k) = 0.5$$

Figure 1. GTM Projections for 2 clusters found by DA in space of 155 Chemical Properties labeled as . or +

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:

$$a(x) = 1 / N, g(k) = 1, s(k) = 0.5$$

Figure 1. GTM Projections for 2 clusters found by DA in space of 155 Chemical Properties labeled as . or +

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 23] with or without annealing and the GTM (Generative Topographic Mapping) dimensional reduction method. We look at clustering with deterministic annealing (DA) and GTM in this paper. F is either directly a cost function C to be minimized (negative of log likelihood) or in annealing methods $C-TS$, the "free energy" where T is a temperature and S is the Shannon Entropy [19]. Unlike simulated annealing, DA involves no Monte Carlo but rather optimizes (1) iteratively as temperature T is varied from high to low values. DA improves on the well known K-means clustering algorithm [20]. For DA clustering, the variables in (1) are given by:
and T is temperature decreased to 1 by some schedule. DA finds K cluster centers $Y(k)$ where K is initially 1 and is incremented by algorithm as T decreases.

In this paper we also look at a second class of algorithms given by (1); namely dimensional scaling or the derivation of a set of vectors v_i in a metric space where the distance between vectors i and j is given by a known discrepancy function δ_{ij}. Here δ_{ij} may come from the distance between points i and j in another vector space or be a discrepancy derived from an algorithm like BLAST comparing sequences in bioinformatics. In particular, we look at a powerful algorithm GTM developed in [21] and often used to map from high dimensional spaces to two or three dimensions for visualization. This is illustrated in Fig. 1 showing the 2D GTM projection of a cheminformatics problem with two different labels showing the mapping of two deterministic annealing clusters found by applying (2) implemented in parallel (for DA and GTM) to points x corresponding to different chemical compounds defined by properties in 155 dimensions. GTM is closely related to SOM (Self Organizing Maps) and one of several dimensional scaling algorithms whose parallel implementation we will discuss in further papers. In equation (1), GTM corresponds to:

$$Y(k) = \sum_{m=1}^{M} W_m \phi_m (L(k)) \text{ with fixed }$$

$$\phi_m(\lambda) = \exp(-0.5(\lambda - \mu_m)^2 / \sigma_m^2) \quad (4)$$

$a(x) = 1; g(k) = (1/K)(\beta / 2\pi D^2)$ where space D dimensional; $s(k) = 1 / \beta$; $T = 1$ and β and W_m are varied for fixed $K, L(k)$, and M below. $L(k)$, λ and μ_m are vectors in the latent (2D) space.

$$Y(k) = \sum_{x=1}^{\psi} X(x) Pr[X(x) \in C(k)] / \sum_{x=1}^{\psi} Pr[X(x) \in C(k)] \quad (5)$$

Pr[$X(x) \in C(k)$] = $\exp[-0.5(X(x) - Y(k))^2 / T] / Z(x) \quad (6)$

written for the case of DA clustering (GTM is similar but more complicated) where new values of cluster centers $Y(k)$ are calculated iteratively from probabilities of x belonging to cluster $C(k)$. Note these algorithms are attractive as they combine the guaranteed decrease of F each iteration characteristic of EM with the avoidance of local minima coming from DA. The annealing in temperature corresponds to a multiscale approach with $T^{1/D}$ as a distance scale. The formalism described above involves several well understood algorithms but we believe that their integration and parallelization is novel. Further the value of annealing which determines the number of clusters or the number of mixture components as a function of T is not very broadly recognized.

Initial results on the parallel performance of DA clustering are shown in fig. 2 for runs on the 8 core Intel machine labeled Intel8b in Table 1. The figure shows that DA has a parallel overhead [18] that decreases asymptotically like $1/n$ as the data set increases. Here grain size n is the dataset size N divided by the number of processors (cores) which is here 8. Putting $T(P)$ as the execution time on P cores, we can define:

$$\text{Overhead } f = (PT(P) - T(1))/T(1) \quad (7)$$

$$\text{Efficiency } e = 1/(1+f) = \text{ Speedup } S(P)/P \quad (8)$$

Thus the overhead of 0.05 seen for large n in Fig. 2 corresponds to an excellent speedup of 7.6. The results for GTM in Fig. 3 show even smaller overheads even at small grain size due to the substantial additional computation (matrix multiplication and equation solving) in this case. In section 5, we emphasize that much of the critical overhead in multicore parallel code is not synchronization but rather due to interference between cores in the memory subsystem.

![Parallel Overhead](image)

Figure 2. Parallel Overhead for GIS 2D DA Clustering on Intel 8b using C# with 8 threads (cores) and CCR synchronization. We show 3 values (10,20,30) for the number of clusters and plot against the reciprocal of the number of data points per thread

![Parallel Overhead](image)

Figure 3. Total Parallel Overhead on Intel8b plotted against $8/N$ for GTM using $M=256$ and $K=4096$

IV. **APPLICATION STRUCTURE**

The algorithms illustrated in equations (1-6) have a structure familiar from many scientific computing areas [6, 24-26]. There is an iteration – in this case over the annealing
synchronize” stages where synchronization typically implies all cores reach a barrier [6, 26]. CCR supports the loosely synchronous paradigm with modest overheads analyzed in detail in earlier papers. Although CCR supports messaging like MPI we only use CCR for synchronization with the shared memory allowing data to be shared. This allows us highly efficient implementation of primitives such as the formation of global sums from those calculated locally; such primitives are some of the compute stages that our algorithms need. The results in Figs. 2 and 3 sum over all synchronizations and the overhead is proportional to 1/n as the dominant compute phase is the calculation of sums like (5) and (6) and these are directly proportional to n = N/P.

<table>
<thead>
<tr>
<th>Machine</th>
<th>OS</th>
<th>Run Time</th>
<th>Mean (µs)</th>
<th>Std Dev Mean (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel8b</td>
<td>X8b</td>
<td>Vista CCR</td>
<td>8.03 .029</td>
<td>3.04 .059</td>
<td>0.884 .0051</td>
<td>0.884 .0069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C# CCR</td>
<td>13.0 .0095</td>
<td>3.08 .028</td>
<td>0.883 .0043</td>
<td>0.883 .0036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C# Locks</td>
<td>13.4 .0047</td>
<td>1.69 .026</td>
<td>0.66 .029</td>
<td>0.659 .0057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1.50 .01</td>
<td>0.69 .21</td>
<td>0.307 .0045</td>
<td>0.307 .016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fedora</td>
<td></td>
</tr>
<tr>
<td>Intel8a</td>
<td>XP</td>
<td>XP CCR</td>
<td>10.6 .033</td>
<td>4.16 .041</td>
<td>1.27 .051</td>
<td>1.43 .049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C# Locks</td>
<td>16.6 .016</td>
<td>4.31 .0067</td>
<td>1.27 .066</td>
<td>1.27 .054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>16.9 .0016</td>
<td>2.27 .0042</td>
<td>0.946 .056</td>
<td>0.946 .058</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel8c</td>
<td>Redhat</td>
<td></td>
<td>0.441 .0035</td>
<td>0.423 .0031</td>
<td>0.423 .0030</td>
<td>0.423 .0032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD4</td>
<td></td>
<td>WinServer</td>
<td>8.58 .0080</td>
<td>2.62 .081</td>
<td>0.839 .0031</td>
<td>0.838 .0031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>C# CCR</td>
<td>8.72 .0036</td>
<td>2.42 .01</td>
<td>0.836 .0016</td>
<td>0.836 .0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C# Locks</td>
<td>5.65 .020</td>
<td>2.69 .0060</td>
<td>1.05 .0013</td>
<td>1.05 .0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>5.65 .020</td>
<td>2.69 .0060</td>
<td>1.05 .0013</td>
<td>1.05 .0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparing our multicore implementations with traditional parallel programming, we see that we are using essentially the same programming model with domain decomposition breaking up the application into parallel components that execute in a loosely synchronous fashion. However, the implementation of this model is different on multicore and clusters. On multicore we minimize memory bandwidth and maximize cache re-use; on clusters we need ingenious communication patterns (the MPI collectives) to move data around.

This paper has focused on multicore performance as this is less well studied than traditional MPI and openMP approaches. We are using exactly the same decomposition that would be used in a traditional MPI approach but implementing communication more efficiently using the shared memory of the multicore node. Note the performance model of equations (7) and (8) used for our CCR results was originally developed for explicit messaging approaches like MPI [24-26]. We will present explicit performance results comparing CCR, MPI and MapReduce (Hadoop) [9] with this identical decomposition and performance model but the different communication approaches used for shared memory, tightly coupled and distributed systems respectively [27]. Each mapping in
magnitude increase in run time over an implementation that stores results in $A(S_i)$ where the separator S is chosen so that adjacent elements of A are separated by 64 bytes or more. These results are documented in Table 2 that records the execution time as a function of S and as a function of several machine and operating system choices. One sees good performance with modest fluctuations as long as S corresponds to a separation of 64 bytes or more. On the other hand in most cases the performance is dreadful and fluctuations sometimes large for separations S less than 64 bytes (the columns labeled 1 and 4 in units of double variables – 8 bytes – in Table 2). This effect is independent of synchronization used (compare CCR and Locks in Table 2) and is presumably due to the cache design on these modern multicore systems. Looking at the separation of 8 or 1024 doubles in Table 2, one can see that with compilers we used, C was much faster than C# and Linux faster than Windows. Most remarkably the Redhat Linux results do not show the degradation of performance seen for Windows for separation of 1 or 4 doubles. The Fedora Linux results on Intel 8b lie in between those of Windows and Redhat in Table 2 showing a factor of 5 difference between separation 1 and 8. Redhat has only a 5% effect while Windows varies widely with an up to a factor of 15 effect.

Although the cache hardware architecture produces the effect of Table 2, its impact is very systems software dependent. We are obviously able to program around this feature but it is unfortunate as using $A(i)$ to store results from thread i is surely a natural strategy. This effect is in fact well known [29, 30] but its implications are often not properly implemented. For example the C# sdk version 2.0 math random number generator uses such an array and so has unnecessarily poor performance.

All the methods need parallelism in different stages. Dominant is the calculation of formulae like those in equations (5) and (6) and this is called the kernel in section 6. However there is linear algebra used to solve equations or in clustering algorithm to calculate correlation matrix to decide whether or not to split clusters. The latter uses the usual power method to find the leading eigenvector and easily parallelizes. However GTM has more extensive need for linear algebra with matrix multiplication as the most computationally demanding part. We implemented this as usual with blocking to lessen memory bandwidth needs and to make good use of cache. In Fig. 4, we plot the execution time as a function of block size. At small block sizes, cache is not used well and the memory bandwidth demands are highest. At large block sizes, the performance declines as the primitive block matrix computation will not fit into cache. This effect is seen first for the fully parallel case as cache is shared. Excellent 1 and 8 core performance is seen for block sizes between 32 and 256; we used block size 32 in GTM results of Fig. 3. Note that parallel matrix multiplication has essentially zero synchronization overhead as each block of the result matrix can be calculated independently. Thus we assign blocks to cores in a block scattered fashion and achieve load balance with no synchronization needed except at the end of the full computation. We stress that these results use straightforward C# code and have not been optimized for floating point performance with specialized kernels.

We used some simple principles to ensure reasonable use of cache. Variables being updated frequently (such as those in equations 5 and 6 updated for each data point x) are stored locally to each thread i.e. to each core. This for example includes the blocks of matrix C in multiplication $C = A \times B$. Variables that are only read such as the matrices A and B, are not copied locally but accessed directly from shared memory.

![Figure 4](image-url)
Figure 4. Timing of 4096X4096 Parallel Matrix Multiplication as a function of block size for 1 and 8 cores on Intel8b

![Figure 5](image-url)
Figure 5. Scaled Run time on Intel8b using Vista and C# with CCR for synchronization on Clustering Kernel for three dataset sizes with 10,000, 50,000 or 500,000 points per thread(core). Each measurement involved averaging over at least 1000 computations separated by synchronization whose cost is not included in results (see text)
Variables are padded if needed to avoid the cache interference effects of Table 2. As explained in introduction, we choose C# for our algorithms so we can get results relevant for commodity deployments but of course C will show similar effects to those presented here.

VI. MEMORY BANDWIDTH EFFECTS

In Figs. 5, 6 and 7 we isolate the kernel of the DA clustering algorithm of section 3 and examine its performance as a function of grain size n, number of clusters and number of cores. We measure thread dependence at three fixed values of grain size n (10,000, 50,000 and 500,000) where all results are divided by the number of clusters, the grain size, and the number of cores and scaled so the 10,000 data point, one cluster, one core result becomes 1. These figures then immediately allow us to identify key features of the computation as deviations from 1. We display cases for 1 cluster (Figs. 5(a) 6(a) 7(a)) where memory bandwidth effects could be important and also for 80 clusters (Figs. 5(b) 6(b) 7(b)) where such effects are small as one performs 80 floating point operations on every variable fetched from memory. The three figures have typical results covering respectively Windows and C# (Fig. 5), Windows and C (Fig. 6) and finally Linux and C (Fig. 7). Always we use threads not processes and C uses locks and C# uses CCR synchronization. Data is stored so as to avoid any of cache line effects discussed in the previous section. Further we do not include synchronization costs in these plots as we have considered these separately. Here we want to isolate the impact of runtime fluctuations on performance.

The results for one cluster clearly show the effect of memory bandwidth with scaled run time increasing significantly as the number of cores used is increased.

In this benchmark the memory demands scale directly with number of cores. Indeed a major concern with multicore system is the need for a memory bandwidth that increases linearly with the number of cores. In Fig. 6 we see a 50% increase in the run time with 8 cores with a grain size of 10,000. This is for C# and Windows and the overhead is reduced to 22% for C on Windows and 13% for C on Linux.

Further we note that naively the 10,000 data point case should get excellent performance as the dataset can easily fit in cache and minimize memory bandwidth needs. We do not observe this which illustrates that the current multicore hardware and software cache architecture is not optimized for the style of application discussed in this paper. We need to explore the cache behavior of more applications to quantify the architecture-algorithm relationship.
We get modest overheads for 80 clusters in all cases which is in fact why the applications of section 3 run well. There are no serious memory bandwidth issues in cases with several clusters and it this case that dominates the computation. This is usual parallel computing wisdom; real size problems run with good efficiency as long as there is plenty of computation. The data mining cases we are studying (Clustering, EM based Mixture models, Hidden Markov Models, Support Vector Machines) satisfy this and will run well on machines that naturally extend current Intel and AMD mainline multicore systems with 100’s of cores and memory bandwidth needs that are modest for large problems (such as many clusters to be determined).

VII. COMPARISON OF MPI AND CCR ON CLUSTERS

In Figures 8-10, we support both MPI and CCR for the full deterministic annealing clustering problem. Interestingly MPI uses mainly MPI_Allreduce or MPI_Bcast and elegantly implements needed synchronization. As we are using C# we chose the new MPI.NET implementation from Indiana [31] which performed excellently. All our runs are on Windows machines. We use the single AMD4 machine running all combinations of CCR and MPI in results reported in figure 8 and a cluster of eight Intel2 machines for figure 9; figure 10 uses a cluster of four AMD8 machines. Note from comparing the top and bottom of figure 8, that parallel overhead is just presenting execution time in a normalized fashion. We always use MPI for synchronization across nodes. Internal to the node, we implement the 2 (Intel2a), 4 (AMD4), 8 (AMD8) way parallelism using either CCR threads or MPI processes. In each case, we used the scaled speedup approach of fixed number of data points per computation unit. This is a thread if CCR used or a process if only MPI. When an MPI process has 2 CCR threads, it corresponds to two computational units with twice the data set size. So execution time should be independent of the MPI/CCR scenario if there are no parallel overheads and more precisely we can use the overhead defined in equation (7). Our results show a maximum overhead of 0.2 and efficiencies that are always greater than 80%. Our results show somewhat higher overheads for CCR than MPI on AMD4 and AMD8 and a detailed analysis shows this is due to higher runtime fluctuations for threads than processes on that machine.
VIII. CONCLUSIONS

We have looked at a class of interesting data mining algorithms and shown efficient parallel implementations with speedups on large “production” problems of greater than 7.5 on an eight core system. We do not believe parallel studies of these algorithms have been discussed previously. Although the parallelism used familiar data parallel techniques, it was not trivial to get good multicore performance in face of the memory, cache and fluctuation overheads discussed here. We are currently tackling applications with millions of data points (PubChem for example has 18 million chemical compounds) each with thousands of properties (dimension D in equations 1-6); the data deluge will only increase the challenge! Simple approaches like K-means and the basic EM approach often find local minima. Here we are developing a suite of robust data mining algorithms that can be applied to large problems and use techniques like annealing to mitigate the local minima issue.

We believe our initial results are encouraging and show that managed code can deliver high performance algorithms. In the future we will investigate further algorithms and apply them with collaborators to interesting applications. This will hopefully contribute to e-Science and quantify the important programming principles for multicore systems. We will also extend our work to cover larger clusters of multicore systems and compare with both MPI and popular distributed programming paradigms like MapReduce [9]; early results can be found in ref. [32]. Our current results are focused on C# for Windows but the basic message is valid for other languages and the Linux O/S. In fact as seen in sections 5 and 6, Linux shows typically less overhead than Windows. We note that Windows is expected to be important in future architectures for client side data mining (naturally on Windows) perhaps supported by a cloud of Windows machines to off load problems that exceed the capacity of a client. Further the comparison between CCR and MPI illustrates the differences between thread and process-based implementation. We expect use of threads for cores inside a node and traditional process-based MPI between nodes to be the dominant execution model for “commodity” applications; for example OpenMP would generate this.

REFERENCES

Annotated list of multicore Internet sites http://www.infomall.org/salsa

Xiaohong Qiu, Geoffrey Fox, and Alex Ho. Analysis of Concurrency and Coordination Runtime (CCR) and Distributed Shared Storage (DSS), Technical Report January 21 2007.

Home Page for SALSA Project at Indiana University http://www.infomall.org/salsa.

Xiaohong Qiu, Geoffrey Fox, and Alex Ho. Analysis of Concurrency and Coordination Runtime (CCR) and Distributed Shared Storage (DSS), Technical Report January 21 2007.

Microsoft Robotics Studio is a Windows-based environment that includes end-to-end Robotics Development Platform, lightweight service-oriented runtime, and a scalable and extensible platform. For details, see http://msdn.microsoft.com/robotics/

Georgio Chrysanthakopulos and Satnam Singh “An Asynchronous Messaging Library for C#”, Synchronization and Concurrency in Object-Oriented Languages (SCOOL) at OOPSLA October 2005 Workshop, San Diego, CA.

